Energia, tömeg, impulzus

Örökmozgók, 100% feletti hatásfok
Rétike
Hozzászólások: 1151

Energia, tömeg, impulzus (21715)

HozzászólásSzerző: Rétike » 2011.07.16. 21:05

@alagi (21660):

OFF
Ide írnék én is véleményt,csak sajnos nekem meg van tiltva.
/OFF Elnézést!
A hozzászólást 1 alkalommal szerkesztették, utoljára Rétike 2011.07.17. 11:03-kor.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21726)

HozzászólásSzerző: Szilágyi András » 2011.07.16. 23:07

@hgy (21712): Jó a dumád, csak smileyt tegyél mellé. Tudod, van egy olyan törvény (Poe törvénye), hogy nincs a fundamentalizmusnak olyan paródiája, amelyet valaki ne tévesztene össze az igazival, ha nincs egyértelműen jelezve, hogy paródia. Ez kicsit adaptálva a gézooizmusra is érvényes :D

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Energia, tömeg, impulzus (21734)

HozzászólásSzerző: mimindannyian » 2011.07.17. 00:06

@Szilágyi András (21726):
Ja, én bevettem. :o Pont ilyen sületlenségeket szokott mondani.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21809)

HozzászólásSzerző: hgy » 2011.07.17. 13:11

@Szilágyi András (21726):
Jó a dumád, csak smileyt tegyél mellé. Tudod, van egy olyan törvény (Poe törvénye), hogy nincs a fundamentalizmusnak olyan paródiája, amelyet valaki ne tévesztene össze az igazival, ha nincs egyértelműen jelezve, hogy paródia. Ez kicsit adaptálva a gézooizmusra is érvényes

Lépjünk egy kicsit tovább. Mint tudjuk, és mint korábban utaltam rá, a húrelméletet azért hozták létre, hogy az általános relativitáselméletet és a kvantummechanikát összhangba hozzák.
A húrelmélet szerint a húrok nagyságrendje 10-35 méter, így dt-re a sebesség értékéből konkrét becslést kapunk. Ez alapján számíthatjuk a sebességek különböző írányú komponenseit.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21819)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 14:01

@hgy (21809): Oké, számítsd ki, legalább röhögünk egy jót.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21842)

HozzászólásSzerző: hgy » 2011.07.17. 15:40

@Szilágyi András (21819):
Oké, számítsd ki
Előtte azonban még tisztázzunk valamit.

@Gézoo (18683): szerint
a fény sebessége a mérések szerint: c=2 997 92 458 108 cm/s

Ezzel szemben úgy tudom, hogy
Bay Zoltán javasolta 1965-ben, hogy a távolságegységet, a métert alapozzuk a pontosabban mérhető időegységre és a fénysebességre.
1983-ban az Általános Súly- és Mértékügyi Konferencia Párizsban tartott 17. ülésén a következő megállapodást fogalmazták meg:
A méter a fény által a vákuumban a másodperc 1 /299 792 458-ad része alatt megtett út hossza.
Mivel Gézoo gyakran számol az általa megadott rossz értékkel, érdekelne, hogy valaki már szóvátette-e ezt?
Közvetlen nincs köze a kért számításhoz, de érdekelne a válasz.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21843)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 15:53

@hgy (21842): Nem.
Akkor lássuk a számítást!

vaskalapos
Hozzászólások: 4606

Energia, tömeg, impulzus (21844)

HozzászólásSzerző: vaskalapos » 2011.07.17. 16:02

@hgy (21842): Senki nem tette szova, folosleges lenne.
Amugy nagyon jo!

c=2 997 92 458 108 cm/s =2 997 924 581.08 m/s valoban ez nagyjabol tizszer gyorsabb, mint a hagyomanyos fenysebesseg, de ez azert van, mert relativ. Ez az alaternativ fenysebesseg.
A fenyt megkozelito sebessegen a tavolsag rovidul, van egy olyan sebesseg, ahol epp 0.1-szeresere rovidul a tavolsag, Gezoo ezen a relativ sebessegen merte a feny altal megtett utat, igy azutan kicsit tobb, mint tizszer akkora utat tett meg neki a feny, mert annak a sebessege nem fuggetlen a vonatkozasi rendszer sebessegetol, miga tavolsag nem fuggetlen.
A masik lehetoseg, hogy altalad bevezetett "hurelmelet" szerint a feny nem egyenes vonalban terjed, hanem kanyarban, es mig te a hur menten nezed a sebeseget, Gezoo viszont a palya keruleti sebesseget irta le.

Mindenesetre Gezoo szamolasi eredmenyeinek helyesseget a tizszeres elteres semmiben nem valtoztatja meg.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21845)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 16:14

@vaskalapos (21844):
A "2 997 92 458 108" szám nyilván úgy keletkezett, hogy eredetileg fel volt írva:
2,997 92458·108 m/s. A kitevő valahogy lecsúszott, a tizedesvessző feledésbe merült, s mivel így nem stimmelt a mértékegység, így az is kicsit átalakult :D

vaskalapos
Hozzászólások: 4606

Energia, tömeg, impulzus (21846)

HozzászólásSzerző: vaskalapos » 2011.07.17. 16:33

@Szilágyi András (21845):
Nagyon jo!
Erre nem gondoltam, pedig kezenfekvo magyarazat.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21848)

HozzászólásSzerző: hgy » 2011.07.17. 17:03

@Szilágyi András (21843):

R sugarú kör h hosszú húrja (a húr egyik végpontjában) sugárirányú komponensének nagyságát jelöljük d-vel.
A megfelelő hasonló háromszögeket véve az alábbi összefüggéseket kapjuk.
d/h=(h/2)/R=h/(2*R),
így a húr irányába eső, v nagyságú eredő sebesség vr sugár irányú komponensére a húr végpontjában:
vr/v=h/(2*R), azaz vr=v*h/(2*R).
Az érintő (tangenciális) írányú komponens: vt=gyok(v*v-vr*vr)=v*gyok(1-h*h/(4*R*R)).
Ez azt jelenti, hogy a vt tangeciális sebességhez minden t időpontban vr sugárirányú sebesség adódik, így alakul ki a húr irányú eredő sebesség.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21849)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 18:04


hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21851)

HozzászólásSzerző: hgy » 2011.07.17. 18:05

@Rétike (21715):
Jobb helyeken a hozzászólás szerkesztése csak addig lehetséges, amíg az az utolsó hozzászólás.
Ellenkező esetben, a szerkesztéssel bármi eltüntethető.
Most ezt használtad ki, hogy annak aki nem követte a fórumot, ne tünjél :? :twisted: -nak.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21852)

HozzászólásSzerző: hgy » 2011.07.17. 18:09

@Szilágyi András (21849):
és h=10-35m.
Azt nem követtem, hogy mi a konkrét feladat, R és v nyilván abból adódik.
(dt=h/v csak a megértéshez kell.)

lorenz
Hozzászólások: 3115
Tartózkodási hely: Budapest-Nagyvárad

Energia, tömeg, impulzus (21853)

HozzászólásSzerző: lorenz » 2011.07.17. 18:10

Egy látszólag OFF kérdés a bennfentesebb hozzászólókhoz:

gézoo nem azonos a bajai nevű kommentelővel?
Gyanús az einstein-fóbiájuk.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21854)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 18:13

@hgy (21852): Oké. Majd szólj, ha méréssel is ellenőrizted. :idea:

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21855)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 18:25

@lorenz (21853): Nem, teljesen mások.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21856)

HozzászólásSzerző: hgy » 2011.07.17. 18:36

@Szilágyi András (21854):
Oké. Majd szólj, ha méréssel is ellenőrizted.

Ezt hogyan gondolod? Nem vagyok kísérleti fizikus, és ha az lennék akkor sem biztos, hogy a szükséges lehetőséggel rendelkezem.
Egyébként milyen kísérlettel lehetne szerinted ellenőrízni?
Az egyes részleteket másodpercenként sokmilliószor a Gps bizonyítja. (Vagy valami hasonlót szoktatok bizonyításként idézgetni.)
Szerinted mi nem igaz: az áltrel. , vagy a húrelmélet?
Szerinted csak bizonyított elméleteknek van értelme és a húrelméletet felejtsük el, nem is érdemes vele foglalkozni?

Avatar
tomkahaw
Hozzászólások: 214

Energia, tömeg, impulzus (21858)

HozzászólásSzerző: tomkahaw » 2011.07.17. 18:40

@hgy (21809):
tovább?? o.O hova akarsz továbblépni, amikor még a körmozgás sem tiszta neked? minek kevered be a húrelméletet az egyenletes körmozgásba? nooormmmáááális maaargiiiittt?

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21859)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 18:43

@hgy (21856): Heisenberg-féle határozatlansági reláció. Pozíciót sem tudsz mérni 10-35 m pontossággal, pláne hogy közben még sebességet is mérjél. Szóval értelmetlen. Ennek belátásához még húrelmélet sem kell.

hgy
Hozzászólások: 12

Energia, tömeg, impulzus (21860)

HozzászólásSzerző: hgy » 2011.07.17. 18:53

@Szilágyi András (21859):
Heisenberg-féle határozatlansági reláció. Pozíciót sem tudsz mérni 10-35 m pontossággal, pláne hogy közben még sebességet is mérjél. Szóval értelmetlen. Ennek belátásához még húrelmélet sem kell.

Ez jó. :)
Kár, hogy a jó kezdet után már semmi humorosat nem tudtam hozni.
Remélem, azért egyesek komolyan vették, és utólag egyszer majd magukra ismernek.
További felesleges időtöltést! (Ez persze nem az SzT tagokra vonatkozik, nekik lehet, hogy ez a dolguk.)

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21861)

HozzászólásSzerző: Szilágyi András » 2011.07.17. 18:58

@hgy (21860): Ne búsulj, azért a dt/0-s rész jó volt 8-)

Avatar
alagi
Hozzászólások: 1274

Energia, tömeg, impulzus (21862)

HozzászólásSzerző: alagi » 2011.07.17. 19:01

@hgy (21860):

SZerintem tul konnyen feladtad, egy igazi gezoo nem riadna vissza egy ilyentol, o siman megcafol egy Heisenberg fele hatarozatlansagi relaciot is, ha eppen ugy adodik. :)

Rétike
Hozzászólások: 1151

Energia, tömeg, impulzus (21863)

HozzászólásSzerző: Rétike » 2011.07.17. 19:43

@hgy (21851):

Imádom,hogy reagáltál rám... :D (A relativitási elméletek #19547)

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21876)

HozzászólásSzerző: Gézoo » 2011.07.18. 10:02

@mimindannyian (21653): Nos, ahhoz valóban eléggé régi, hogy mindenki ismerje és használhassa.
Kemény János műve. Az egyetlen világszerte tanított programozási nyelv amelyet egy Magyar tudós készített.
A világon az első programozási nyelvet szintén egy Magyar tudós Neumann János készítette. (Bár azt a nyelvet világszerte nem oktatják, csak a "leszármazott" változatait amelyeknek a neve "assembly".)

Ami pedig a basic nyelvű "ellenőrzést" illeti.. Így is felfoghatja az aki nem tud különbséget tenni a leírás és az ellenőrzés között.

Ami pedig programot magát illeti, szépen illusztrálja azt, hogy dt értéke minél jobban megközelíti a határértékét, (amit el nem érhet, csupán végtelenül megközelíthet,)
annál több oldalú sokszögként közelítjük a kört.
Ehhez vK és vR irányú elmozdulásokra van szükség, valamint, azt is szépen demonstrálja, hogy dt --> 0 megközelítéssel a határérték közelében végtelen sok oldalú sokszöggé válik a közelítés. Azaz a simuló görbe csak végtelenül közelítheti meg a kör alakot, de soha nem fedheti le teljességében.

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21877)

HozzászólásSzerző: Gézoo » 2011.07.18. 10:04

@lorenz (21853): Nem. Én András vagyok civilben.
Vagy hgy.. Vagy az akivel éppen azonosítani akarnak..

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21878)

HozzászólásSzerző: Gézoo » 2011.07.18. 10:12

@Szilágyi András (21564):
Egy sebesség értéke mindig egy valós szám. Az "infinitezimális" nem egy valós szám. Tehát a sebesség nem lehet "infinitezimális".


Nos, akkor egy kis alapozás!

Infinitezimálisok valós számok. Végtelenül kicsiny, nullánál éppen hogy eltérő törtekkel leírható valós számok.

Ami pedig a sugár irányú sebesség határértékét illeti, valóban nulla.. Csak van egy kis bibi!

Nem olvastad el figyelmesen, mert leírták (ugyanott ahonnan a levezetést szerezted,) hogy a határérték nem része az értelmezési tartománynak.

Azaz a nullát csak végtelenül megközelítheti, (azaz infinitezimális értékű lehet a sugár irányú sebesség, ) de nem veheti fel,

mert ha felvenné, akkor nem körmozgást, hanem egyenes vonalú mozgást végezne a pont.

Ilyen egyszerű.

Azon én is meglepődtem, hogy ilyen sokan írogattak ide, de egyikük sem ismerte ezeket az alapismereteket a körmozgásról.
Ebből következően az összes többi hozzászólásuk tartalma éppen ilyen alaptalan lehet.

Avatar
sajnos_kacat
Hozzászólások: 680
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21885)

HozzászólásSzerző: sajnos_kacat » 2011.07.18. 10:57

@Gézoo (21878): És ha a körmozgást eleve polárkoordinátákban írnád le, akkor csak a szögelfordulást kellene infinitezimálisan kicsi számokkal közelítened, és máris nem lenne sugárirányú elmozdulás.
Ennyire nehéz átváltani Cartesi koordinátákból?

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21887)

HozzászólásSzerző: Gézoo » 2011.07.18. 11:03

@sajnos_kacat (21885): Alapvetően jó ötlet.. mint ahogyan Vaskalaposnak írtam is, de az a gond, hogy a polárkoordináta rendszerben az egyenes vonalú mozgáshoz tartozó szögsebesség és a szöggyorsulás is maximumot ad az érintő pontnál.
Azaz eben guba.. Így is, úgy is határértékhez közelítéssel kapjuk a komponensek eredőjét.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Energia, tömeg, impulzus (21888)

HozzászólásSzerző: mimindannyian » 2011.07.18. 11:05

@Gézoo (21878):
Azon én is meglepődtem, hogy ilyen sokan írogattak ide, de egyikük sem ismerte ezeket az alapismereteket a körmozgásról.

Egy autós halad a forgalommal szemben. Egy? Mindegyik!

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21891)

HozzászólásSzerző: Szilágyi András » 2011.07.18. 11:18

@Gézoo (21878):
Infinitezimálisok valós számok. Végtelenül kicsiny, nullánál éppen hogy eltérő törtekkel leírható valós számok.

Ezt rosszul tudod. Ez matematika. A valós számok halmazába nem tartozik bele az infinitezimális nevű mennyiség (ahogy a végtelen sem). A matematikában szokták definiálni az ún. hipervalós számokat, abban már benne van az infinitezimális.

Egy fizikai mennyiség értéke azonban csak a valós számok halmazába tartozhat. Nincs olyan mérőműszer, amely ki tudná jelezni azt, hogy a mennyiség értéke infinitezimális.

Nem olvastad el figyelmesen, mert leírták (ugyanott ahonnan a levezetést szerezted,) hogy a határérték nem része az értelmezési tartománynak.


Én nem szereztem sehonnan a levezetést. Fejből írtam. Nem tudom, mit értesz "értelmezési tartomány" alatt. De természetesen a 0 érték része a sebesség értelmezési tartománynak, hiszen a 0 sebesség fizikailag értelmezett. Éppenséggel az infinitezimális sebesség az, ami fizikailag értelmetlen.

Azaz a nullát csak végtelenül megközelítheti, (azaz infinitezimális értékű lehet a sugár irányú sebesség, ) de nem veheti fel, mert ha felvenné, akkor nem körmozgást, hanem egyenes vonalú mozgást végezne a pont.


Ez tévedés.

Gézoo! A tévedésed teljesen világos, már korábban is rávilágítottam. Ott tévedsz, hogy a sugárirányú sebességet nem az AKTUÁLIS érintőtől való távolodási sebességként értelmezed, hanem egy RÖGZÍTETT érintőtől való távolodás sebességeként. Ez hibás. Az AKTUÁLIS érintő a testtel együtt mozog, a test mindig rajta van az érintőn, tehát sosem távolodik tőle még csak infinitezimálisan sem! A sebesség sugárirányú komponense ehhez az AKTUÁLIS érintőhöz van viszonyítva, és nyilvánvalóan nulla.

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21901)

HozzászólásSzerző: Gézoo » 2011.07.18. 11:46

@Szilágyi András (21891):
Infinitezimálisok valós számok. Végtelenül kicsiny, nullánál éppen hogy eltérő törtekkel leírható valós számok.

Ezt rosszul tudod. Ez matematika. A valós számok halmazába nem tartozik bele az infinitezimális nevű mennyiség (ahogy a végtelen sem). A matematikában szokták definiálni az ún. hipervalós számokat, abban már benne van az infinitezimális.
"Newton, csakúgy, mint Leibniz, az analízis (differenciálszámítás és integrálszámítás) vagy, más néven az infinitezimális kalkulus egyik megalkotója. "
Érdekes lenne, ha igazad lenne.. de szerencsére nincs..

De természetesen a 0 érték része a sebesség értelmezési tartománynak, hiszen a 0 sebesség fizikailag értelmezett.
Érdekes.. vR=0 az egyenes függvényében a vÉ -re merőleges irányú sebesség, eredőjük a pálya menti sebesség:
v=gyök(vÉ2+vR2)

Azaz a különféle sebesség arányokból az R nagysága:

R=vÉ2/vR*dt

Érdekes lenne vR=0 határértéknél nincs értelmezve az R sugár, hiszen egyenesen halad a pont..

András! "A tévedésed teljesen világos, már " az infinitezimális fogalmát is kevered imagináriussal, vagy más i-vel kezdődő kifejezéssel.

Mert az infinitezimálisok valós számok. Picik, de valósak.. Két szám hányadosaként képezhetjük őket, azaz törtek.

"A racionális számok és az irracionális számok együtt alkotják a valós számok halmazát. A valós számok halmaza és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A valós számok halmaza végtelen, hisz tartalmazza a szintén végtelen számú természetes, egész és tört számokat, "


Egyébként a nulla, mint határérték még nagyon sok más esetben sem érhető el, miután a nullával osztás nem végezhető el..

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Energia, tömeg, impulzus (21905)

HozzászólásSzerző: mimindannyian » 2011.07.18. 11:57

Ügyrendi kérdés: van a fafejűségnek az a mértéke, ami konzekvenciákat von maga után? Vagy kifáradásig megy a küzdelem?

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21914)

HozzászólásSzerző: Szilágyi András » 2011.07.18. 12:19

@Gézoo (21901): Az infinitezimális KALKULUS az egy számítási MÓDSZER. Maga az infinitezimális pedig egy MENNYISÉG, amely nem tartozik a valós számok körébe.
Valós számnak azt hívjuk, amit fel lehet írni végtelen tizedestört formájában. Föl tudod így irni az infinitezimálist? Nem. Tehát nem valós szám.
R=vÉ2/vR*dt

vR=0 az egyenes függvényében a vÉ -re merőleges irányú sebesség, eredőjük a pálya menti sebesség

A pálya itt a körpálya: a pálya menti sebesség érintő irányú. Ebből adódóan nincs sugárirányú komponense.
Nem értem a gondolatmenetedet. Szerinted a test nem a körpálya mentén halad, hanem befelé, a kör belseje felé? Akkor az már nem körmozgás!
R=vÉ2/vR*dt

Ezt már végképp nem értem.

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21918)

HozzászólásSzerző: Gézoo » 2011.07.18. 12:29

@Szilágyi András (21914): Az infinitezimális valós szám. Ha tetszik neked, ha nem.

Egyébként ez sem igaz: "Valós számnak azt hívjuk, amit fel lehet írni végtelen tizedestört formájában."
Példa 1 azaz egy egy valós szám, 1/1=1 nem végtelen tizedes tört..
2 azaz kettő egy valós szám, 2/1=2 nem végtelen tizedes tört.. stb.

De még ez is téves:
"A pálya itt a körpálya: a pálya menti sebesség érintő irányú." Pálya menti sebesség mindig pálya irányú. Ezért nevezzük pálya mentinek.. Különben érintő irányúnak neveznénk.. ha érintő irányú lenne. Ne zavarjon meg, hogy egyenes szakaszokat leszámítva a pálya menti és az érintő irányú két, külön sebesség.

R=vÉ2/vR*dt


"Ezt már végképp nem értem." Nem csodálom. Miért éppen ezt értenéd az egészből?

Persze amint megérted, akkor azonnal azt is megérted, hogy miért nem lehet vR egyenlő zéróval..

Sőt talán azt is, hogy minden R értékhez külön vÉ2/vR arány tartozik.

Avatar
sajnos_kacat
Hozzászólások: 680
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21920)

HozzászólásSzerző: sajnos_kacat » 2011.07.18. 12:33

@Gézoo (21918):

1.0000000000000000000000000000000000000000000000...

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21922)

HozzászólásSzerző: Szilágyi András » 2011.07.18. 12:38

@Gézoo (21918): Szerinted az 1 meg a 2 nem írható fel végtelen tizedestörtként?
Különben nem kevered véletlenül a valós számokat a racionális számokkal?
egyenes szakaszokat leszámítva a pálya menti és az érintő irányú két, külön sebesség.

Ezt én nem látom.
Szerinted a kör iránya az nem az érintőirány? Hát mi?

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21923)

HozzászólásSzerző: Gézoo » 2011.07.18. 12:41

@sajnos_kacat (21920): Vicces! Na mit szólsz ehhez: 1/3= 0,33333333...33333 ... 333 (<--ez a végtelenedik számjegy) ? :D

vagy ehhez: n=1/(∞ - 1) :D:D:D

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21924)

HozzászólásSzerző: Gézoo » 2011.07.18. 12:45

@Szilágyi András (21922): Nem végtelenekként, de tizedes törtekként felírhatók.

"Szerinted a kör iránya az nem az érintőirány? Hát mi?"
Az amelyik egy picikét eltér az érintő egyenesétől!
R=vÉ2/vR*dt Ez a picike a vÉ2/vR arányból adódik..

Mert azt ugye nem vitatod, hogy valós R érték nélkül, nincs körív.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21926)

HozzászólásSzerző: Szilágyi András » 2011.07.18. 12:49

@Gézoo (21924): Akkor szerinted a test nem a körpálya mentén, hanem egy húr mentén halad? Mekkora szöggel térül el a körpályától?
R=vÉ2/vR*dt

Ezt az összefüggést én nem értem, nem látom.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Energia, tömeg, impulzus (21927)

HozzászólásSzerző: mimindannyian » 2011.07.18. 12:52

@Gézoo (21918):
http://en.wikipedia.org/wiki/Real_number

Ordered fields extending the reals are the hyperreal numbers and the surreal numbers; both of them contain infinitesimal and infinitely large numbers


Mutass olyan helyet, ahol valós számnak nevezi valaki az infinitezimális mennyiséget rajtad kívül...

vaskalapos
Hozzászólások: 4606

Energia, tömeg, impulzus (21929)

HozzászólásSzerző: vaskalapos » 2011.07.18. 12:54

@Gézoo (21878):
Ami pedig a sugár irányú sebesség határértékét illeti, valóban nulla.. Csak van egy kis bibi!

Nem olvastad el figyelmesen, mert leírták (ugyanott ahonnan a levezetést szerezted,) hogy a határérték nem része az értelmezési tartománynak.

Azaz a nullát csak végtelenül megközelítheti, (azaz infinitezimális értékű lehet a sugár irányú sebesség, ) de nem veheti fel,

mert ha felvenné, akkor nem körmozgást, hanem egyenes vonalú mozgást végezne a pont.

Ilyen egyszerű.

Azon én is meglepődtem, hogy ilyen sokan írogattak ide, de egyikük sem ismerte ezeket az alapismereteket a körmozgásról.



Gezoo nem a kormozgasrol ir, hanem a sokszog alaku mozgasrol. Erre igaz amit ir. Soha nem fogjatok tudni meggyozni, mert nem latja be a kulonbseget a valodi kormozgas, es a sokszor keruleten torteno seta kozott.
Ezek a kulonbozo felbontasu korok Gezoo vilagaban, ahogy no a szogek szama ugy egyre kisebb a sugar (kozeppont) iranyu komponense a mozgasnak.
A sokszogek soroztata csak vegtelen modon kozeliti a valodi kort, de VALODI KOR NEM LETEZIK.
Kép

Es igy tovabb.

vaskalapos
Hozzászólások: 4606

Energia, tömeg, impulzus (21932)

HozzászólásSzerző: vaskalapos » 2011.07.18. 12:59

@Szilágyi András (21926):
Idézet:
R=vÉ2/vR*dt

Ezt az összefüggést én nem értem, nem látom.


Kepzelj picike derekszogu haromszogeket a kor keruletere. A kormozgas soran a test eltavoldik az erinto iranyaban, majd dt ido mulva visszater a korivre sugariranyu sebesseggel. Ezt ismetelgeti.

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21937)

HozzászólásSzerző: Gézoo » 2011.07.18. 13:07

@Szilágyi András (21926): "Akkor szerinted a test nem a körpálya mentén, hanem egy húr mentén halad? Mekkora szöggel térül el a körpályától?" Szerintem nem..

Oké, nehéz elfogadni, hogy egyszerre két sebességvektor van, amelyeknek az egyike végtelenül kicsiny, a másik pedig kezdetben adott irányú..

Ha a függvényt nézed: R=vɲ/vR*dt akkor egyértelmű, hogy vR valós, de nagyon kicsiny.. és biztosan nem lehet nulla.

Ha pedig a gyorsulás vektorát, akkor tudnod kell, hogy derékszögű koordináta rendszerben a mindenkori sugár irányú gyorsulásvektor felbontható x és y irányú gyorsulásvektorokra.
De ilyen a matek, a komponensek is bonthatók érintő és sugár irányú komponensekre, sőt! a "régi és az új " érintők közötti különbözetet éppen ezek a komponensek hozzák létre.

Vegyünk egy vÉ=vx*t függvényű egyenes vonalú mozgást.
Ahhoz, hogy ez helyett R= vɲ/vR*dt mozgássá alakulhasson

vx*t értékéből "le kell vonni" helyesebben olyan sebességvektorral kell a vektori összegét képezni, amelyik a vx irányú komponenset csökkenti és a pont vy irányú komponenssel R sugarú pályát követővé alakítja az egyenes vonalú mozgást..
Azaz a pont vy=vy+vR sebességek eredőjeként
y=vy*t és x=(vx-vn)*t koordináta felé fog elmozdulni.

A körmozgásból levezetett szinusz és koszinusz függvényekkel éppen ezeket a sebességkomponens változásokat kapjuk a nagyon piciny dfi szögelfordulásnál.
Azaz vy*dt=sin(dfi) és vx=1- cos(dfi)

Azaz a két mozgásnak a folyamatosan képződő eredője tartja-kényszeríti körpályára a mozgást.
Ha bármelyik komponenst kivesszük, akkor egyenes vonalú mozgássá alakul a pont mozgása.

"Ezt az összefüggést én nem értem, nem látom." Nos, látni senki sem fogja helyetted.. Talán ha megpróbálnád levezetni..

(Vagy visszalapoznál oda, ahol Vaskalaposnak levezettem :D)


Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21940)

HozzászólásSzerző: Gézoo » 2011.07.18. 13:12

@vaskalapos (21929): "Gezoo nem a kormozgasrol ir, hanem a sokszog alaku mozgasrol. " Nos, a körmozgásról.. Csak nálad vagy egyik vagy másik sebesség van.. Ezért idézted a húrokat..

Ha mindkét sebesség egy időben hat, akkor eredőjük R=vɲ/vR*dt függvénnyel meghatározott sugarú haladás.

És nem sokszögek!

Úgyhogy mielőtt a Gézoo világában mi van-t találgatnád, a saját világodban rakj rendet.

Szilágyi András
*
*
Hozzászólások: 6169
Tartózkodási hely: Budapest

Energia, tömeg, impulzus (21941)

HozzászólásSzerző: Szilágyi András » 2011.07.18. 13:13

@Gézoo (21937): Én azt hiszem, hogy te tulajdonképpen egy görbe vektort akarsz létrehozni. Egy olyan vektort, ami nem egy adott irányba mutat, hanem az attól való eltérülést is magában foglalja. Egy olyan vektort, ami rásimul a körvonalra.

De ilyen vektor nincs, Gézoo. Minden vektor egy adott irányba mutat. Euklidészi síkgeometriában dolgozunk.

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21943)

HozzászólásSzerző: Gézoo » 2011.07.18. 13:13

@vaskalapos (21932): Ne vezesd félre!

Mindkét sebesség együtt képezi az eredőt és nem felváltva!!! :roll:

Gézoo
Hozzászólások: 3979

Energia, tömeg, impulzus (21946)

HozzászólásSzerző: Gézoo » 2011.07.18. 13:17

@Szilágyi András (21941): Na, majdnem..

Most fogd meg az egyenes vektorunkat.. Mit mutat ez a vektor?

Ez az eredő (vÉ+vR) vektor az elmozdulás pillanatnyi irányát mutatja.. a következő pillanatban már más felé mutat..

Azaz nem a vektor építi fel a kör kerületét, hanem a vektor mutatta elmozdulások (folyamatos!) sorozata..

Ti úgy fogjátok fel, mintha a vektorokat fektetnétek a pályára.. pedig nem szabad úgy gondolkodni..

vaskalapos
Hozzászólások: 4606

Energia, tömeg, impulzus (21948)

HozzászólásSzerző: vaskalapos » 2011.07.18. 13:19

@Gézoo (21943):
Tokmindegy, hogy egyszerre, vagy infinitezimalis dt-vel valtakozva.
Azert szmit neked a sebessegnel a felbontas, hogy milyen kis szakaszokra bontos, attol fugg a sugariranyu sebesseg.

A lenyeg, hogy megertettem, miert nem ertitek egymast.

A tetszolegesen sok-sok oldalu sokszog nem kor.

Andras gorbe vektora is jo modell, a gorbenek van ket egyenes komponense.

Mutass olyan helyet, ahol valós számnak nevezi valaki az infinitezimális mennyiséget rajtad kívül...
Például itt: http://hu.wikipedia.org/wiki/Val%C3%B3s_sz%C3%A1mok



Ott biztosan nem.


Vissza: “Fizika”

Ki van itt

Jelenlévő fórumozók: nincs regisztrált felhasználó valamint 0 vendég

cron