Széles Gábor féle energiacella és tsai.

Örökmozgók, 100% feletti hatásfok
Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78468)

HozzászólásSzerző: mimindannyian » 2014.05.05. 23:22



Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78470)

HozzászólásSzerző: Question » 2014.05.05. 23:27

@Solaris (78467):
Nem csak lokálisan értelmezik. Nem tudok ppt-t beilleszteni, nézd meg itt a hetedik találatot, ott is ott van:

https://www.google.hu/search?q=differen ... e&ie=UTF-8

szerk.:vagy pedig http://bookline.hu/product/home.action? ... _Atlasz_4_
A hozzászólást 2 alkalommal szerkesztették, utoljára Question 2014.05.05. 23:34-kor.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78472)

HozzászólásSzerző: mimindannyian » 2014.05.05. 23:31

@Solaris (78467): ez üres kötözködés, talán azt hitted, úgy értem, hogy az absz.fv sehol sem diffható? Azért ennyire hülyének kár nézni...
Egy fv-t diffhatónak nevezünk, ha mindenhol az. Hasonlóan, monoton növekvő, ha mindenhol az.
Nyelvtan, szemantika, józan ész, teccik érteni?

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78473)

HozzászólásSzerző: Solaris » 2014.05.05. 23:43

@mimindannyian (78472): Belőtted magad? A monotonitás is lokális tulajdonság.

Ilyen blődliket meg ne írj:

Egy fv-t diffhatónak nevezünk, ha mindenhol az


Nem ismerek rád. :)

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78474)

HozzászólásSzerző: Solaris » 2014.05.05. 23:52

@Question (78470): Nem jól értelmezed. A differenciálhatóság lokális tulajdonság. A lokális tulajdonság azt jelenti, hogy a függvény a "t" hely valamely környezetében rendelkezik egy bizonyos tulajdonsággal. Egy f(x) egyváltozós valós függvény ott differenciálható, ahol létezik a különbségi hányadosának a határértéke. Ha az értelmezési tartománya valamely részhalmazán differenciálható, akkor azt mondjuk, hogy azon a halmazon differenciálható. Ettől a differenciálhatóság még lokális tulajdonság marad. Elemi ismeret egy függvényről eldönteni, hogy mely halmazon differenciálható. Ugyanez áll a "mimindannyian" által hozott monotonitásra és másra is. Biztosan bal lábbal feküdt/kelt és most kötözködős kedvében van, a függvénydiszkussziót meg elfeledte rég. :)

Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78475)

HozzászólásSzerző: Question » 2014.05.05. 23:55

@Solaris (78474):
Akkor még egy link:
http://en.wikipedia.org/wiki/Differentiable_function
a differentiable function of one real variable is a function whose derivative exists at each point in its domain.


Használják így is, fogadd el. Ez már a 3. link.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78476)

HozzászólásSzerző: Solaris » 2014.05.06. 00:06

@Question (78475): Bocs, de szerinted ez mit jelent?

The absolute value function is not differentiable at x = 0.


Bármennyi linket hozol, attól még az a helyes, ahogyan én írtam.

ennyi
Hozzászólások: 3849

Széles Gábor féle energiacella és tsai. (78477)

HozzászólásSzerző: ennyi » 2014.05.06. 04:11

@mimindannyian (78460):
Ami folytonos, még távolról sem biztos, hogy differenciálható. Pl. az abszolútérték-függvény.


Reg erettsegiztem.
Az y=x fuggveny az differencialhato?
A differencialja lenyegeben a fuggveny meredeksege? azaz = 1

Az y=-x is differencialhato? a meredeksege -1
Az y=0 is differencialhato? a merdeksege =0

Akkor ha ezt a harom fuggvenyt osszeillesztem, az miert nem differencialhato?

Integralni lehet oket?

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78478)

HozzászólásSzerző: mimindannyian » 2014.05.06. 07:40

@ennyi (78477): Tényleg rég érettségiztél... Balról és jobbról képezve a diffhányados határértékét a két különböző érték jön ki 0-ban...

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78479)

HozzászólásSzerző: mimindannyian » 2014.05.06. 07:45

@Solaris (78476): Akkor most van olyan kifejezés, hogy egy függvény differenciálható/deriválható, vagy nincs? Idézlek: "Abban pedig tévedsz, hogy az abszolútérték-függvény nem differenciálható." Ha nincs ilyen kifejezés, akkor hülyeséget mondtál. Ha van, akkor viszont nekünk van igazunk. Sakk-matt.

A monotonitással ugyanez a helyzet. Intervallumra szokás megadni, de annak kitétele nélkül a teljes értelmezési tartomány, mint intervallum értendő, s ezért már a kisiskolában is mondanak olyat, hogy az ex fv. szigorúan monoton növekvő. Ha ez a nyelvtani bravúr magas, akkor bocsánat.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78480)

HozzászólásSzerző: Solaris » 2014.05.06. 08:08

@mimindannyian (78479): A kisiskolában nyilván pongyolát visel a tanítónéni és a diákjai, amit ideje letenni, ahogy neked is.

Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78481)

HozzászólásSzerző: Question » 2014.05.06. 09:05

@ennyi (78477):
Fogd fel egy adott pontban a függvény deriváltját úgy, mint az adott pontban a függvényhez húzott érintő meredekségét. Ezzel a felfogással láthatod, hogy 0-ban az abszolútérték-függvénynek végtelen sok érintője van, tehát nem lehet egyértelműen meghatározni az érintő meredekségét.

@Solaris
Vázolom, milyen utak állnak előtted:
- Levezeted, hogy a fogalom egész függvényre való kiterjesztése miért haszontalan (esetleg hozol egy forrást ami azt írja, hogy ilyet nem szabad csinálni)
- Elismered, hogy egy tök jelentéktelen kérdésben tévedtél (én ezt javaslom!)
- Véded tovább a védhetetlent, mint Gézoo szokta, a saját (nem létező) tekintélyére hivatkozva

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78482)

HozzászólásSzerző: mimindannyian » 2014.05.06. 09:06

@Solaris (78480): Egyre inkább úgy tűnik, hogy a magyar nyelv rejtelmei nem az erősséged. Tudod mit jelent a "már ... is" kifejezés? ("már a kisiskolában is"). Nos, elárulom. Hogy nem csak ott, hanem onnantól kezdve. Az "onnantól kezdve" jelentése megvan, vagy igényelsz további segítséget?

Egyébként nem válaszoltál a kérdésemre. Tényleg azt hitted, hogy szerintem az absz. fv. sehol sem differenciálható? Ha így hitted, akkor nagyon elszakadtál a valóságtól, és túlon-túl hülyének nézel. Ha nem így gondoltad, akkor viszont oktondi kötekedés volt csak, hogy ebben "kijavítottál".
Azzal, hogy erre nem válaszoltál, kezdem sejteni, hogy feltehetőleg mindkét kitételben van igazságtartalom. De nyitott vagyok rá, hogy pótold a válaszod.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78483)

HozzászólásSzerző: mimindannyian » 2014.05.06. 09:07

@Question (78481):
- Véded tovább a védhetetlent, mint Gézoo szokta, a saját (nem létező) tekintélyére hivatkozva
Ott a pont. Én erre teszem a tétem.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78484)

HozzászólásSzerző: mimindannyian » 2014.05.06. 09:12

Már ugyan volt elég link, de azért hozok én is egyet, az releváns angol wiki legelső első mondatát:

In calculus (a branch of mathematics), a differentiable function of one real variable is a function whose derivative exists at each point in its domain.

http://en.wikipedia.org/wiki/Differentiable_function

Avatar
Rigel
Hozzászólások: 1492

Széles Gábor féle energiacella és tsai. (78485)

HozzászólásSzerző: Rigel » 2014.05.06. 09:20

@mimindannyian (78460):
Látom, jól elvitatkoztok a dolgon...

mimindannyian írta:Ami folytonos, még távolról sem biztos, hogy differenciálható. Pl. az abszolútérték-függvény.

Tökéletesen igazad van. MATEMATIKAILAG minden differenciálható függvény folytonos, de nem minden folytonos függvény differenciálható. Sajnos (vagy sem) a magyar wikis szócikk a matematikai "folytonossággal" összekeverhető kifejezést használ, amikor SZEMLÉLETESEN "folytonos szimmetriáról" ír. Úgy vélem, hogy itt nem a matematikai definíció szerint kell érteni a folytonosságot, hanem csak egy szemléletes rövidítése annak a szükséges kitételnek, amit a szócikk is és én is a zárójelben bővebben kifejtünk: a szimmetriatranszformáció(!) folytonos kell legyen abban az értelemben, hogy bármely kis változtatást meg lehessen csinálni, ne legyenek a transzformáció szempontjából nem értelmezett tartományok, illetve hogy a kicsi transzformáció mindig megfelelően kicsi változást okozzon, és ne hatalmas ugrást (mint az abs(x) a 0 pontban).
Az angol szócikk megfelelő pusztán differenciálható szimmetriáról beszél, az az egzakt. A magyar szerintem szemléletes, de ez azzal jár, hogy a hozzád hasonló szőrszálhasogatók beleköthetnek.

mimindannyian írta:És, ha én úgy építem fel, hogy nem ezt várom tőle?...

Hehehe...
Nem tudod úgy építeni. Gondold végig!

KITALÁLSZ egy gépet. Ehhez felhasználod a meglévő fizikai ismereteidet. MEGÉPÍTED a gépet később. Mi alapján építetted meg? Hogy megcsinálja azt, amit korábban fejben már lemodelleztél. Banyek. Máris felhasználtad a fizikai modell időbeli eltolásának invarianciáját, máskülönben a korábbi tervből nem építenél utóbb gépet! Ha tagadod az időbeli eltolás szimmetriáját, akkor a korábbi terved és a későbbi gép fizikai modelljének a működése eltérő. Nem tudsz megépíteni egy gépet, mert amit itt és most tudni vélsz a fizikai világról, az később már biztosan nem úgy fog működni! Akkor meg miért is ÉPÍTED azt a gépet? Gondold végig!

mimindannyian írta:Egy óra, amely mutatja az ősrobbanás óta eltelt másodperceket, vajon mindig ugyanazt csinálja? Dehogy, mindig mást, hiszen sosem írja ki a kijelzőre ugyanazt a számot.

Rossz a példa.
Az univerzum nagyléptékű viselkedését (értsd: Ősrobbanás és a tágulás) az általános relativitáselmélet modellje írja le. Abban pedig nincsen globálisan időbeli eltolás szimmetria. Ha valamit ehhez a fizikai rendszerhez kötsz, akkor értelemszerűen felbukkannak az órádhoz hasonló "nem hétköznapi gépek".
A Newtoni fizikában van időbeli eltolás szimmetria, és általában a gépeket erre a fizikára alapozva készítjük, mivel minden más fizikai hatás (kvantum, relativisztikus) elenyésző az elvárt működéshez képest. Ha létezne olyan fizikai szint, ahol sérül ez a szimmetria (pl. kiderülne, hogy az idő diszkrét állapotok sorozata, mint a filmkockák) az sem befolyásolná azoknak a gépeknek a készítését, amelyek működését a jelenleg ismert, folytonos időre alapuló fizikai modellek 99,99999999% pontossággal leírják. (Persze a gépet időben nem tolhatjuk el az Ősrobbanás elé, mert ott nem ugyanúgy működne mint most. Egyszerűen akkor nem létezne.)

Avatar
Rigel
Hozzászólások: 1492

Széles Gábor féle energiacella és tsai. (78486)

HozzászólásSzerző: Rigel » 2014.05.06. 09:34

@Solaris (78463):
Solaris írta:Frappánsnak tűnik a válaszod, de szerintem kicsit elnagyoltad. Kezdjük azzal, hogy a Noether - tétel pusztán matematikai tétel, s mint tudjuk, a matematika semmit nem kell mondjon a természetről. A természetről a fizika mond, amit mondani tud, s ehhez kölcsönveszi és használja a matematika eszköztárát. Ez mindaddig megy, ameddig az eredmények nem ellentétesek a tapasztalattal. Emmy Noether tétele akkor alkalmazható a fizikában, ha a tér és az idő homogén, továbbá a tér még izotrop is.

Talán elkerülte a figyelmedet, ezért megismétlem, hogy a hozzászólásomban már eleve utaltam a fizikai tapasztalatra, ami a Noether-tétel alkalmazhatóságához elengedhetetlenül szükséges:

Amikor felépítünk egy gépet, hogy csináljon meg valamit, akkor máris az időbeli eltolás szimmetriáját igaznak fogadjuk el. Ugyanis azt várjuk a gépünktől, hogy időben BÁRMIKOR bekapcsolva pontosan ugyanazt fogja csinálni. Azaz a gép működését leíró fizikai modell független a t0 időpont megválasztásától, bárhova eltolhatjuk időben a működést.

Tehát a hozzászólásomban a matematikai és a fizikai feltétel egyaránt szerepelt.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78487)

HozzászólásSzerző: mimindannyian » 2014.05.06. 12:19

@Rigel (78485):
Mi alapján építetted meg? Hogy megcsinálja azt, amit korábban fejben már lemodelleztél. Banyek. Máris felhasználtad a fizikai modell időbeli eltolásának invarianciáját, máskülönben a korábbi tervből nem építenél utóbb gépet!
Ha pl. egy fizikai alapállandó nem lenne állandó (pl. fénysebesség, mint ahogy voltak is ilyen feltételezések, csak nem tűnnek igaznak), akkor még tervezhetsz gépet! Tervezhetsz úgy, hogy már most tekintetbe veszed, hogy a géped holnap és azután működjön, vagy tervezhetsz úgy is, hogy nem törődsz semmivel, összedobod a gépet és vagy működik majd, vagy nem. Ha igen, lehet, hogy örökmozgó lesz. Sőt, tervezés nélkül is készíthetsz gépet, mint valami művész. Nem jellemző, hogy ebből kisül valami, de lehetséges, és ez arra rámutat, hogy az érved hamis, miszerint a tervezéssel magával kizárod az örökmozgó létét.

Avatar
Rigel
Hozzászólások: 1492

Széles Gábor féle energiacella és tsai. (78491)

HozzászólásSzerző: Rigel » 2014.05.06. 13:27

@mimindannyian (78487):
Akkor tisztázzuk egyszer és mindenkorra, mert látom, hogy nem tudsz kilépni a kötözködő üzemmódból.

A fizikai rendszerek (modellek, elméletek stb.) időbeli eltolással kapcsolatos szimmetriája vizsgálható azon a fizikai KÍSÉRLETEN keresztül, hogy egy ismert működésű elvű gép UGYANOLYAN szerkezettel, a működést érdemben befolyásoló paraméterek szempontjából UGYANOLYAN külső körülmények között, IDŐBEN BÁRMIKOR működtetve pontosan UGYANAZT a működési végeredményt adja.

Lehet, hogy a korábbi hozzászólásban a fentieket értelemszerűen leegyszerűsítettem, hogy egy gép ha ma délután és jövő csütörtökön pont ugyanúgy működik, akkor igazolja az időbeli eltolás folytonos szimmetriáját, de azért gondolkodjunk már! Az állításom kimondatlanul tartalmazza, hogy a két időpontban a külső körülmények azért ugyanazok kell legyenek, józan ésszel senki sem várja el egy géptől, hogy mindenben ugyanúgy működjön mindenféle körülmények között! És itt nemcsak olyasmiről van szó, hogy esetleg valami univerzális állandó változik az idővel. (Ez ugyanis nem sérti az időbeli eltolás szimmetriáját hiszen beépül a fizikai modellbe) Olyan triviális dolgokról van szó, hogy például a hőmérséklet jövő csütörtökön ne legyen 30 000 K, mert akkor itt minden plazmaállapotban lesz és a gép értelemszerűen nem fog ugyanúgy működni, mint ma délután. Ennyi intelligens belátás a minimum az ilyen fórumhozzászólások olvasóitól, senki ne várja el tőlem, hogy egy ilyen kötetlen vitában mindent rigorózusan a puszta definíciókig leírjak és a szájába rágjak!

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78492)

HozzászólásSzerző: alagi » 2014.05.06. 13:36

@Rigel (78485):

KITALÁLSZ egy gépet. Ehhez felhasználod a meglévő fizikai ismereteidet. MEGÉPÍTED a gépet később. Mi alapján építetted meg? Hogy megcsinálja azt, amit korábban fejben már lemodelleztél. Banyek. Máris felhasználtad a fizikai modell időbeli eltolásának invarianciáját, máskülönben a korábbi tervből nem építenél utóbb gépet! Ha tagadod az időbeli eltolás szimmetriáját, akkor a korábbi terved és a későbbi gép fizikai modelljének a működése eltérő. Nem tudsz megépíteni egy gépet, mert amit itt és most tudni vélsz a fizikai világról, az később már biztosan nem úgy fog működni! Akkor meg miért is ÉPÍTED azt a gépet? Gondold végig!


Ez nem jo erv. Miert ne lehetne egy olyan gepet epiteni, ami csak egy adott idoben mukodik? Miert ne lehetne ezt a gepet korabban kigondolni?

Analog pelda: A gat+ vizeromu is csak egy adott helyen mukodik, ha feltolod a hegyre akkor nem. Ez nem jelenti azt, hogy az impulzus nem marad meg. Az impulzus megmaradasat annak a szimmetrianak koszonhetjuk, hogy a gatat es a folyot vagy az egesz naprendszert egyszerre arreb rakhatjuk.

Hasonloan, nem lehet kizarni hogy legyen egy olyan gep ami valami nagyon furfangos modon lelassitja az univerzum tagulasat, es csereben energiat termel. Nem fogadnek ra hogy ilyen lesz valaha, de elvileg nem kizarhato. Ezt a gepet akarmikor megtervezheted, mert tudod hogy az univerzum egy adott modon (ami idoben epp nem eltolasinvarians) fejlodik.

A Newtoni fizikában van időbeli eltolás szimmetria, és általában a gépeket erre a fizikára alapozva készítjük, mivel minden más fizikai hatás (kvantum, relativisztikus) elenyésző az elvárt működéshez képest. Ha létezne olyan fizikai szint, ahol sérül ez a szimmetria (pl. kiderülne, hogy az idő diszkrét állapotok sorozata, mint a filmkockák) az sem befolyásolná azoknak a gépeknek a készítését, amelyek működését a jelenleg ismert, folytonos időre alapuló fizikai modellek 99,99999999% pontossággal leírják. (Persze a gépet időben nem tolhatjuk el az Ősrobbanás elé, mert ott nem ugyanúgy működne mint most. Egyszerűen akkor nem létezne.)


Egyetertek azzal a konkluzioval hogy nagyon-nagyon nem valoszinu hogy Newtoni mechanikara alapulo szerkezettel energiat lehet termelni a semmibol. De nem azert mert ez egy matematika tetel, a fizika ugyanis kiserleti tudomany, hanem mert ugy tunik a ksierletek alapjan, hogy a Newtoni modell bizonyos korulmenyek kozott nagyon jol leirja a valosagot.

És itt nemcsak olyasmiről van szó, hogy esetleg valami univerzális állandó változik az idővel. (Ez ugyanis nem sérti az időbeli eltolás szimmetriáját hiszen beépül a fizikai modellbe


De ez serti. Ha az univerzalis allandoak idofuggoek, akkor az energia nem marad meg.

senki ne várja el tőlem, hogy egy ilyen kötetlen vitában mindent rigorózusan a puszta definíciókig leírjak és a szájába rágjak!


Nem, en peldaul csak azt varom hogy helyes allitasokat irjal le. :)

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78493)

HozzászólásSzerző: mimindannyian » 2014.05.06. 13:48

Csatlakozom az előttem szólóhoz.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78494)

HozzászólásSzerző: Solaris » 2014.05.06. 13:49

Question és mimindannyian:

Előbb tanuljátok és értsétek meg a matematikát, utána járjon a szátok két google - huszár!

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78495)

HozzászólásSzerző: mimindannyian » 2014.05.06. 13:51

@Solaris (78494): Ezt Gezoo sem mondhatta volna ízesebben, bravó!

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78496)

HozzászólásSzerző: Solaris » 2014.05.06. 13:56

@Rigel (78486): Értem, hogyne érteném, csak ezúttal te nem érted. Túlságosan kihangsúlyoztad egy fizika témában a matematikát, mint döntő tényezőt, holott nem a matematika, hanem a tapasztalat, a mérés az, ami dönt. Megismételném, hogy a matematika semmit nem mond a világról, mert idézem önmagam:

"Mondhatjuk azt, hogy a matematika egy formális rendszer, ami formális nyelvből, következtetési szabályokból és néhány axiómából áll, ahol az axiómák csak a formális nyelv kiválasztott formulái. Ilyen értelemben egy matematikai elmélet nem szól semmiről, a nyelv szimbólumainak nincs olyan értelmű jelentése, hogy valami valóságban létezőre utalnának. A Pitagorász-tétel sem azért igaz, mert egyezik a fizikai valósággal, hanem azért, mert következik az axiómákból. Az is érdekes, hogy a matematikában általában véve értelmetlen az igazság fogalma. Akkor értelmes, ha megadjuk, hogy melyik axióma-rendszerben igaz az állításunk. A matematika tehát nem alkalmazható a valóságra. Érdekes, nemde? Azért van megoldás erre is. A világot fizikai elméletek magyarázzák - próbálják -, s ezek két részből állnak; egy formális rendszerből, amelyet a matematikából veszünk és ehhez rendszerhez kapcsoljuk a méréseken, kísérleteken alapuló empirikus rendszert."

Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78497)

HozzászólásSzerző: Question » 2014.05.06. 14:04

@mimindannyian (78495):
Így van. Igaziból magamat nem értem, miért álltam vele szóba megint. Igyekszem nem beleesni ebbe a hibába többet.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78498)

HozzászólásSzerző: Solaris » 2014.05.06. 14:07

@mimindannyian (78495): Bravó, hogyne. Mondasz egy kapitális baromságot, ezúttal ezt:

Ami folytonos, még távolról sem biztos, hogy differenciálható. Pl. az abszolútérték-függvény.


, azután meg kapálódzol, mint a légy a ragacsban és terelgetni akarsz. Ez így nem megy mimindannyian. Ne legyél már magadtól így elragadtatva. Nyilván te sem érthetsz mindenhez, meg felejtettél is jócskán, azért vagy ilyen pongyola. Csak a te kedvedért: az idézetben helyes, hogy a folytonosság nem jelenti a differenciálhatóságot is, de hogy az ABS(x) függvény ne lenne differenciálható, nos, ez a hülyeség.
A monotonitás fogalmával is hanyagul bánsz. Nincs olyan, hogy valamely f(x) függvény monoton. Olyan van, hogy f(x) monoton nő/fogy, vagy szigorúan monoton nő/fogy, vagy nincs olyan tulajdonsága, hogy monotonitás. Gondolkodj, utána hepciáskodj.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78499)

HozzászólásSzerző: Solaris » 2014.05.06. 14:08

@Question (78497): Besértődtél? Úgy kell neked. Miért nem görgettél?

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78500)

HozzászólásSzerző: Solaris » 2014.05.06. 14:12

@Rigel (78491):
... nem tudsz kilépni a kötözködő üzemmódból.
- írod mimindannyiannak. Ne csodálkozz. Ő már így született, s ez nem az ő hibája, hanem a genetikáé.

Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78501)

HozzászólásSzerző: Question » 2014.05.06. 14:14

@Solaris (78499):
Dehogy sértődtem be, hisz nem érdekel, mit gondolsz rólam.

Csak annak adtam hangot, hogy feleslegesen próbáltam veled értelmesen beszélni. Egy saját hibájának beismerésére képtelen, fafejű gyökér paraszt vagy, és ezt már rég tudtam. Ez lesz az utolsó mondatom a számodra.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78502)

HozzászólásSzerző: Solaris » 2014.05.06. 14:22

@Question (78501): Nem értem. Bámulsz a tükörbe és beszélgetsz önmagaddal. Előfordul az ilyen, de miért kell leírnod, hogy mit vágsz a tükörképed fejéhez?

PS:

... hisz nem érdekel, mit gondolsz rólam.


Eddig nem gondoltam rólad semmit. Amit most gondolok, azt tiltja leírnom a fórum szabályzata. :)
A hozzászólást 1 alkalommal szerkesztették, utoljára Solaris 2014.05.06. 14:45-kor.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78503)

HozzászólásSzerző: mimindannyian » 2014.05.06. 14:37

@Solaris (78498): Úgy látszik az érvek továbbra sem érdekelnek, állíthatja az egész világ máshogy, lehet értelmetlen az állításod, a kérdésekre nem válaszolsz, csak hajtogatod, hogy igazad van. Gézoo2.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78504)

HozzászólásSzerző: Solaris » 2014.05.06. 14:42

@mimindannyian (78503): Ne fesd az ördögöt a falra te hólyag, mert megjelenik!

Azt vélem, megválaszoltam a kérdéseidet - fuss át a hozzászólásokon -, ám ha mégsem, akkor kérdezz nyugodtan. Ha tudom, akkor megválaszolom a kérdéseidet, ha nem, majd guglizol.

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78505)

HozzászólásSzerző: alagi » 2014.05.06. 14:50

@Solaris (78502):

Igaza volt Questionnak, inkabb veded a vedhetetlent, csak nehogy be kelljen ismerni hogy tevedtel.
Gezoo legjobb tanitvanya.

(Pont mint regebben az izotrop tenzorral)

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78506)

HozzászólásSzerző: Solaris » 2014.05.06. 15:09

@alagi (78505): Aham, és miben tévedtem mister Alagi?

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78507)

HozzászólásSzerző: mimindannyian » 2014.05.06. 15:23

@Solaris (78504): Az önellentmondásodat pl. hiába guglizom, attól tartok, arra tőled jöhetne érdemi válasz, mint ahogy arra is, hogy amikor belekötöttél az abs() nem differenciálhatóságába, akkor vajon hülyének néztél, vagy csak okoskodni akartál.

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78510)

HozzászólásSzerző: alagi » 2014.05.06. 16:27

@Solaris (78506):

Szerintem vilagos volt hogy Question melyik hozzaszolasara utalok. Annak a vitanak az elozmenyeit nezd meg, ha elfelejtetted volna.

De peldaul ebben is:

Nincs olyan, hogy valamely f(x) függvény monoton


Ha hallanal neha gyakorlo fizikusokat, matematikusukat tarsalogni, akkor bizony azt venned eszre, hogy ilyeneket mondanak,
az alabbi szabalynak megfeleloen.
Def: egy fuggvenyt monotonnak nevezunk, ha monoton novekvo, vagypedig monoton csokkeno.
(ha nem specifikaljuk, akkor a teljes ertelmezesi tartomanyra gondolunk)

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78511)

HozzászólásSzerző: Solaris » 2014.05.06. 16:45

@mimindannyian (78507): Nem értem. Fel nem foghatom, hogy mit nem értesz ezen? A differenciálhatóság lokális tulajdonság, vagy fogalmazzak másként; pontbeli tulajdonság. Az ABS(x) függvény a teljes értelmezési tartományában differenciálható, kivéve az x = 0 helyet. Helytelen tehát azt állítani, hogy az ABS(x) nem differenciálható, mert az x = 0 helyen nem differenciálható. Ezzel egyenértékű, de inkább kapitális baklövés azt állítani, hogy f(x) akkor differenciálható, ha mindenütt differenciálható. Ez blődli. Ugyancsak helytelen és hibás valamely függvényről csak annyit mondani, hogy differenciálható. Mindig meg kell adni azt is, hogy hol differenciálható, vagy ami ezzel ekvivalens, azt, hogy hol nem differenciálható. Ez alól kivételt az un. elemi függvények jelentenek/jelenthetnek, mert esetükben tétel mondja ki, hogy az értelmezési tartományuk belső pontjaiban differenciálhatóak. A függvények - csak egyváltozós valós függvényekről beszéltünk - más, lokális tulajdonságaira is érvényesek a fentebb írtak.

Nincs itt semmiféle önellentmondás. Arról van szó, hogy képtelen vagy elviselni, ha tévedsz, képtelen vagy belátni, hogy nincs igazad és képtelen vagy a másikat megkövetni, ha megsértetted. Minden reakciód erről szól ma. Miért olyan fontos neked, hogy hülyének néztelek-e, amikor kijavítottam az ABS(x) függvényről tett hibás állításodat? Ha ez téged megnyugtat, akkor közölhetem, hogy nem néztelek hülyének. Okos, de nem hibátlan, nem mindentudó embernek tartalak, ahogyan senki más nem hibátlan és nem mindentudó. Az "okoskodni akartál" kifejezést pedig kikérem magamnak! Amit írtam, azt értem is, nem pedig gugliztam valahonnan a nagyvilágból.


Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78513)

HozzászólásSzerző: Solaris » 2014.05.06. 16:58

@alagi (78510): Értem. :) A fizikus nem matematikus és többet engedhet meg magának társalgás közben, mint egy matematikus. Bizonyos pongyolaságok belső körben, ahol tudják is, hogy miről beszélnek, megengedhetőek, de ez a fórum nem az a hely.

Def: egy fuggvenyt monotonnak nevezunk, ha monoton novekvo, vagypedig monoton csokkeno.
(ha nem specifikaljuk, akkor a teljes ertelmezesi tartomanyra gondolunk)


Az idézet igaz. Minek neveznéd ezt a függvényt?

f(x) = 1

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78514)

HozzászólásSzerző: Solaris » 2014.05.06. 17:08

@ennyi (78512): Szívesen, ámbár nem tudom, legfeljebb sejtem, hogy mit tettem, ami köszönetet érdemel.

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78518)

HozzászólásSzerző: alagi » 2014.05.06. 18:29

@Solaris (78513):

A fizikus nem matematikus és többet engedhet meg magának társalgás közben, mint egy matematikus


Hulyeseg. A kommunikacionak annyira kell nem pongyolanak lenni hogy az uzenet atmenjen, minnel kevesebb felesleges sallangal. Ez fuggetlen attol hogy fizikusok, matematikusok, vagy pedig hentesek tarsalognak. A matematikusok ugyanugy nem jaratjak feleslegesen a szajukat mint a fizikusok vagy a hentesek.

Az idézet igaz


Akkor az elobb, amikor azt irtad hogy olyan nem letezik hogy a fuggveny monoton, akkor tevedtel?

Minek neveznéd ezt a függvényt?

f(x) = 1


A fuggveny az fuggveny. Mi masnak kellene neveznem?

De van otletem hogy mire gondoltal a nagyon-nagyon pongyola megfogalmazasoddal (erdekes, azt hittem ez a forum nem az a hely, ahol ilyen orbitalis meretu pongyolasag megengedheto): a monotonitasara vagy kivancsi. Rendben, ha neked ez tul bonyolult, segitek:

az f(x) fuggveny monoton.
az f(x) fuggveny monoton csokkeno.
az f(x) fuggveny monoton novekvo.
az f(x) fuggveny nem szigoruan monoton. (tehat sem szigoruan novekvo, sem szigoruan csokkeno)

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78519)

HozzászólásSzerző: mimindannyian » 2014.05.06. 18:38

@Solaris (78511):
Ezzel egyenértékű, de inkább kapitális baklövés azt állítani, hogy f(x) akkor differenciálható, ha mindenütt differenciálható.
Jól van, építsd tovább a Soláris matematikát, Gézoo is biztos besegít.

Mindig meg kell adni azt is, hogy hol differenciálható, vagy ami ezzel ekvivalens, azt, hogy hol nem differenciálható.
Ez hülyeség. Ugyanezen alapon azt is elvárhatnád, hogy mindig legyen megmondva, hogy a sin(x)-ben az x a szabad változó, nem egy konstans, sőt, az értékét a valós számokból veszi, nem pedig komplex, vagy természetes.

Egyszerűen okoskodni akartál, és felsültél, csak beismerni a hibádat képtelen vagy. Kaptál hivatkozásokat rá, hogy igenis használatos az a megfogalmazás, hogy egy függvény differenciálható. Innentől kezdve nem mondhatod, hogy ez értelmetlen kifejezés, csak azt, hogy neked nem tetszik. Ez utóbbi viszont csak fafejűségről tanúskodna, hiszen hasznos kifejezés, elkerülhető vele, hogy mindig ki kelljen írni: "az értelmezési tartomány minden pontjában".

Nincs itt semmiféle önellentmondás.
De van. Ha szerinted értelmetlen a "fv differenciálható" kifejezés, akkor nem állíthattad volna, hogy fent tévedtem, hiszen akkor egyszerűen jelentés nélküli az állításom. Ha tévedésnek minősíted, akkor már jelentést tulajdonítottál neki.

Miért olyan fontos neked, hogy hülyének néztelek-e, amikor kijavítottam az ABS(x) függvényről tett hibás állításodat?
Csak azért, mert ez lett volna az egyik hipotézis, hogy miért kezdtél el hülyeségeket állítani.

Az "okoskodni akartál" kifejezést pedig kikérem magamnak! Amit írtam, azt értem is, nem pedig gugliztam valahonnan a nagyvilágból.
Miért, amit a guglizik valaki, vagy könyvből nézi ki, azt nem értheti? Hogy te milyen sötét vagy...
Elárulom, én azért használtam itt ezt a kifejezést, mert matematius és fizikus ismerősökkel is már használtam, és mindenki értette. Te elkezdtél dohogni, hogy ez hülyeség, erre kaptál rá hivatkozást, hogy bizony más is használja, és értelmes is. De továbbra is neked van igazad... Mutass egy matematika könyvet, ahol le van írva, hogy fv. differenciálhatóságáról csak és kizárólag a hely konkrét megadásával lehet beszélni, intervallumra, vagy az egész domainre vonatkoztatva tilos!

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78520)

HozzászólásSzerző: alagi » 2014.05.06. 18:52

@mimindannyian (78519):

Mutass egy matematika könyvet, ahol le van írva, hogy fv. differenciálhatóságáról csak és kizárólag a hely konkrét megadásával lehet beszélni, intervallumra, vagy az egész domainre vonatkoztatva tilos!


Meg ha ilyen letezne is (egyebkent nem letezik), ez akkor se tenne semmise azt a tenyt, hogy ezt a kifejezest ("a fuggveny differencialhato") hasznaljak, es azt ertik alatta hogy mindenhol differencialhato, ahogy fentebb 1000-szer le lett irva.
Azert is zavar ez a megjegyzes, mert lathatoan Solaris autoriter, neki az az erv hogyha valami konyvben van leirva, mert akkor az ugyvan, es ha nincs konyvben leirva akkor meg nincs ugy. Ez persze hulyeseg, es szerintem nem kene ebben a rossz szemleleteben erositeni.

Avatar
mimindannyian
*
*
Hozzászólások: 7881
Tartózkodási hely: Szoboszló

Széles Gábor féle energiacella és tsai. (78521)

HozzászólásSzerző: mimindannyian » 2014.05.06. 18:58

@alagi (78520): OK, igaz. Csak ilyen gavallér vagyok, hogy neki még ezt a rossz érvet is elfogadtam volna - ám még ilyet sem tud felmutatni.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78522)

HozzászólásSzerző: Solaris » 2014.05.06. 19:03

@alagi (78518):
Hulyeseg. A kommunikacionak annyira kell nem pongyolanak lenni hogy az uzenet atmenjen, minnel kevesebb felesleges sallangal. Ez fuggetlen attol hogy fizikusok, matematikusok, vagy pedig hentesek tarsalognak. A matematikusok ugyanugy nem jaratjak feleslegesen a szajukat mint a fizikusok vagy a hentesek.


A hülyeség jelződdel nem értek egyet. :) Amikor pld. a tenzorokról volt előadás, óva intett bennünket az előadó, hogy a mátrixot ne tévesszük össze a tenzorral. Egy hét múlva fizika előadáson: - Nem tudják mi a tenzor? Hát a mátrix!

A többin érdemes elgondolkodni.

Éppen javítani akartam az "Idézet igaz." mondatomat arra, hogy "Elfogadom ezt a definíciót." Mivel megelőztél, már nem javítom ki, úgy marad. Értelemszerűen tévedtem a "monoton függvény" kifejezés használatát illetően, de szerencsére, ettől még nem áll meg a Nap az égen.

A fuggveny az fuggveny. Mi masnak kellene neveznem?


Mondjuk én konstans függvénynek nevezném, de nem erre gondoltam, hanem a monotonitásra. Utóbbit illetően a válaszodat természetesen elfogadom. A kérdésemmel nem óhajtottalak megbántani!

Kevesebb gúnynak és több humornak jobban örültem volna mister Alagi, de mit tehetnék? Senki nem bújhat ki a bőréből, én sem, te sem.

Avatar
Question
Hozzászólások: 1055

Széles Gábor féle energiacella és tsai. (78523)

HozzászólásSzerző: Question » 2014.05.06. 19:05

@alagi (78520):
Szerintem nem így van, linkeltem neki könyvet is, nem zavartatta magát. Solaris szerint annak van igaza, aki vele egyetért, ilyen egyszerű.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78524)

HozzászólásSzerző: Solaris » 2014.05.06. 19:06

@alagi (78520):
Azert is zavar ez a megjegyzes, mert lathatoan Solaris autoriter, neki az az erv hogyha valami konyvben van leirva, mert akkor az ugyvan, es ha nincs konyvben leirva akkor meg nincs ugy. Ez persze hulyeseg, es szerintem nem kene ebben a rossz szemleleteben erositeni.


Ostobaságot írsz rólam! A többit illetően olvass vissza, mielőtt ítélkezel.

Avatar
Solaris
Hozzászólások: 3286

Széles Gábor féle energiacella és tsai. (78525)

HozzászólásSzerző: Solaris » 2014.05.06. 19:12

@mimindannyian (78521):
OK, igaz. Csak ilyen gavallér vagyok ...


Szerintem valami más vagy. :D

Avatar
alagi
Hozzászólások: 1274

Széles Gábor féle energiacella és tsai. (78526)

HozzászólásSzerző: alagi » 2014.05.06. 19:15

@Solaris (78524):

Oke, fentebb elismerted hogy tevedsz a szohasznalat ugyeben, megkovetlek, lehet hogy akkor megsem vagy Gezoo2 :)

Amikor pld. a tenzorokról volt előadás, óva intett bennünket az előadó, hogy a mátrixot ne tévesszük össze a tenzorral. Egy hét múlva fizika előadáson: - Nem tudják mi a tenzor? Hát a mátrix!


Ebbol nem az a tanulsag hogy a fizikus eloado nem ertene hozza, vagy buta, hanem az hogy nem mindneki gondolkozik ugyanugy.
Egy adott koordinatarendszerben a tenzorok es a matrixok kozott egy-egy ertelmu kapcsolat van, ezert nem hibas a tenzorokra ugy gondolni mint matrixokra. Ha egy problema megoldasahoz elegendo egy koordinatarendszert hasznalni, akkor pl. tok felesleges a tenzorokat es a matrixokat megkulonboztetni. Ha eppen koordinatarendszer transzformaciokon morfondirozunk, akkor persze elengedhetetlen.

Nagyon sokfele modon lehet matematikai es fizikai objektumokra gondolni, egyik mod ezert jo a masik meg azert, es nem feltetlenul igaz hogy az osszes mod kozul van egy igazi, az osszes tobbi meg hibas.
A hozzászólást 1 alkalommal szerkesztették, utoljára alagi 2014.05.06. 19:23-kor.


Vissza: “Fizika”

Ki van itt

Jelenlévő fórumozók: nincs regisztrált felhasználó valamint 1 vendég

cron