Az energia-impulzus vektor nem lehet térszerű vektor, hanem csak időszerű, vagy szélső esetben fényszerű.
Valamint pozitív, értem ez alatt azt, hogy a végpontja a felső félkúpban van, amely a pozitív irányba szélesedik.
(Fényszerű esetben az ehhez a kúphoz tartozó csúcspontban van...)
Lorentz-transzformációval ebből nem tudjuk kivezetni.
Ez azt jelenti, hogy az invariáns skalár hossza külön-külön egyféle kapcsolatban áll az időszerű és a térszerű komponenssel.
Tekintsünk el most a gravitációtól, tehát a világunk legyen ettől mentes, így az nélkül beszélhetünk az alapvető megmaradásokról.
Az energia-impulzus vektor ebben a világban egy megmaradó mennyiség.
Ez nem csak azt jelenti, hogy a hossza megmaradó mennyiség, hanem nyilván a komponensei külön-külön is megmaradó mennyiségek.

- Hogy miért a komponensei is?
Hát mert ebben a tekintetben nem ugrálhatunk át közben egyik inerciarendszerből a másikba.

- Hogy mi közben?
Hát a folyamat vizsgálata közben, ami a megmaradásnak megfelelően játszódhat csak le.

- Na de milyen folyamat?
Hát a világban zajló folyamatok: mozgások és átalakulások. A belső dinamikai folyamatokról van szó. A relativisztikus mechanikában ezek a rugalmas mozgolódások, amiről fentebb olyan hosszan írtam. A világban az anyag, ami a belső kölcsönhatások miatt mozgolódik, kontinuum jellegű matematikai leírással fogalmazható kellőképpen meg. Ezért lesz kiemelkedő szerepe az energiaimpulzus
-tenzornak.
Mivel így az energia-impulzus vektor
integrális mennyiség, az, a részrendszereket tekintve felbontható az összetevők energia-impulzus vektoraira. Érezhető, hogy az összetevők skalár hossza
egyáltalán nem lesz lényeges mennyiség.
Ez a fenti tárgyalásomban az úgynevezett "nyugalmi entalpia" tömegértékekben szer
c, vagyis
az invariáns skalár nyugalmi tömeg szer
c. Ezt (
/c) hiába integrálnánk a teljes rendszerre, az égvilágon semmi haszna nincs.
Laciéknak hiába tetszik ez a mennyiség
/c, mert invariáns skalár, és ezért milyen szép!

, elnevezik
külön tömegnek, amit persze így már csak úgy értelmeznek, hogy az egy nyugalmi mennyiség.
Ezért én a fenti tárgyalásomban fel sem írtam, hogy:

.
Vagy hogy:

,
mert

, ahol

a részrendszerek invariáns tömege,

a teljes rendszer invariáns tömege.
Laciék gondolkodásmódja mindig a nyugalmi rendszer felől akarja megfogni a dolgot, csakhogy abból annyi van, ahány részrendszer. Pl. egy anyagi kontinuumnál, kontinuum sok. Viszont, ha választunk
EGY megfigyelő inerciarendszert, akkor az minden részrendszer tekintetében
ugyan az, és ha ebben a rendszerben gondolkodunk, akkor máris célszerűnek látszik a energiát csupán a tömeg ekvivalensének értelmezni, melyeket a
c2 mennyiség kapcsol össze.

- Hogy miért nem azt írtam, hogy a tömeget értelmezzük az energia ekvivalensének?
Mert, mint az a fenti fejtegetéseimből is kiderül, úgy nem igazán jó fogalmazni, hogy a tömeg "az energia" ekvivalense, hiszen az entalpia is energia jellegű mennyiség, vagy pl. a hőmérséklet, stb... és még végül hajlamosak lennénk ezeket kihagyni a tömeg fogalma alól. De ha az "energia" kifejezés alatt az "energia jellegre" gondolunk, akkor az minden ilyet magában foglal, és akkor majdnem úgy is jó.

- Hogy miért csak majdnem?
Hát mert a tömeg az önmagában egy átfogóbb értelmű fizikai mennyiség, és fogalom.

- Hogy mi a tömeg?
A tömeg a tehetetlenség mértéke.

- Hogy mit jelent itt a tehetetlenség?
Hát azt, hogy
minden rendszer a saját tömegével, és egyben tömegközéppontjával szemben tehetetlen, vagyis arra nem tud hatni.
(Ez még szerintem talán a gravitációt tartalmazó világban is igaz marad, csak egy kicsit nehéz elképzelni...) Ez a mondat
magában foglalja az alapvető megmaradási tételeket is (energia-, impulzus-, impulzusmomentum-, és tömegközéppont megmaradás). Az "energiamegmaradás" inkább csak amolyan megszokott fogalom. Mivel itt tulajdonképpen "teljes energiáról" van szó, amit entalpiának nevezünk inkább (amibe még a hőmérsékletet is képzeljük bele..), azt ennek megfelelően kell érteni. Mondhatnánk
entalpiamegmaradást inkább. Sajnos a fogalmaink ilyen-olyan értelemköre, és a nyelvészeti logika eléggé és súlyosan belekever a hirtelen fizikai gondolkodásunkba, ahogy azt fentebb az irományomban is taglaltam.

- Hogy mit jelent az, hogy a tehetetlenség mértéke?
Hát azt, hogy ha bezárom az egész rendszert "szőrőstül-bőrőstül" egy nyugalomban lévő "feketedobozba", vagy másként mondva egy külső rendszerbe beágyazva, mint csupán egy lokális részrendszert képzelem el, akkor ha azt a külső rendszerben mérve ráhatással gyorsítani szeretném, mennyivel állna annak ellen. Ez egy kicsit absztrakt elképzelés, mert ha a fekete dobozomban a belegyömöszölt rendszer tömegközéppontja mozog, akkor is úgy vesszük, hogy a "feketedoboz" tömegközéppontja nyugszik, mivel arra a lokális részrendszer mivoltot szabom ki, és a többi ilyen célszerűségből hozzá képzelt részrendszerrel együtt a közös (beágyazó rendszer) tömegközéppontot egyszerűen nyugvónak képzelem, aminek a "feketedobozom" tömegközéppontja a lokalizáltságnak megfelelő bontásból eredő nyugvó része.
Ennek az egésznek a lényege, azaz a bizonyos függetlenségek megvalósulnak egy egyszerű tömegpontos példában a sebességre merőlegesen gyorsító ráhatáskor, azaz a transzverzális tömeg levezetési példájában. A transzverzális tömeg ezért egyezik a relativisztikus tömeggel.
Mint ahogy említettem, Laciék gondolkozásmódja mindig a legbelső objektum nyugalmi rendszere felől akarja megfogni a dolgot, és így mindent csak kovariáns mennyiségekben szeretnek látni.
pk = m0uk, meg Minkowski-féle erő, stb... Csakhogy ezekhez megannyi saját nyugalmi rendszer is tartozik, amit azért nem minden esetben szeretnénk nyilvántartani. Ha valaki kellően elmerül a Novobátzky könyvben észreveszi, hogy sok helyen bizony nem a kovariáns mennyiségekkel dolgozik. Egy összetettebb (sok, vagy kontinuum sok részrendszert tartalmazó) szemléletben (mint az anyagi kontinuumok relativisztikus mechanikája, dinamikája), olykor célszerűen jobb azokat a mennyiségeket tekinteni, amik a megfigyelő rendszere alapadatai alapján (pl. a megfigyelő órája szerinti idő, és nem a legbelső objektum sajátidő szerint) képződnek. Ilyen pl. a
vi sebesség, és az ezzel felírt
pk = mvk egyenlet alapján az
m relativisztikus tömeg (Novobátzky könyv 90. oldal), vagy a nem Minkowski-féle erő.
Az energiaimpulzus-tenzor is egy megfigyelő rendszerbeli lokális mennyiség. Nem törődik a lokális helyen éppen áthaladó szubsztancia saját nyugalmi rendszerével, nincs szüksége arra a sebesség adatra, ami azt meghatározza.
Ebből térfogati integrálással a teljes rendszer impulzusához és energiájához (entalpiájához) jutunk. Ezek a megmaradó mennyiségek
eleget tesznek a tehetetlenségi fogalomnak anélkül, hogy átugranánk a teljes rendszer energia(vagy entalpia)-impulzus vektora szempontjából nyugalmi rendszerbe, ezért ez
tömeg szer sebességet, és
tömeg szer
c2-et jelent, bármelyik kezdetben választott megfigyelő inerciarendszerből is indulunk ki az elején az energiaimpulzus-tenzortól. Ebből egyértelműen látszik, hogy tehetetlensége nem csak az invariáns nyugalmi tömegnek van (és ez a lényeg!!), ezért hiba a tömeget csak az alapján újra(!!) definiálni, mikor is a tömeg definíciója már létezik:
a tehetetlenség mértéke. (Ezután már csak az egyértelműsége a lényeg, ami viszont az imént felvázolt gondolatmenetből adódik...)