Nem megszámlálható, folytonos. Ilyenkor a báziselemekhez nem tudsz konkrét értéket rendelni. Sűrűség jellegű az egész így.
Fantasztikus. Akkor a magam részéről ezt az eposzt lezártnak tekintem.
Ebből az egészből az jön ki, hogy az integrális energia komponens kiszámításakor nem elég csak az energiaimpulzus-tenzor energiasűrűségnek nevezett időszerű sarokkomponensét kiintegrálni (a hármastérfogatra). Hozzájárul a szimmetrikus tenzor többi átlós komponense is. Izotróp esetben így a nyomás. (A nem izotróp eset problémás...)
Erre tudnál valami forrást adni?
Mi a gond a gondolatkísérletemmel? (amit ugye be is idéztél feljebb..)
Figyelembevéve hogy én most gondolatolvasósat játszok, egyelőre több lehetőséget tartok fenn, aztán majd szelektálok.
Egyelőre az " akkor az lesz a gond" -ra szavazok, legalábbis ha a legegyenesebb értelmezést választom.
Mellékesen a számodra már korábban beidézett:
http://www.astro.ucla.edu/~wright/cosmo_constant.html
linket olvasgatva, minimális számolás után máris rájöhetünk, hogy azonos térfogat mellett, munka befektetésével (pl: az energiasűrűség növelésével, amelynek a megvalósíthatóságát most figyelmen kívül hagyhatjuk) az entalpia éppen változatlan marad.
A tömeg-energia ekvivalenciát így természetesen a teljes "energiára" azaz az entalpiára kell érteni. (Így a képletben E az entalpiát takarja, jelenti.)
Az, hogy az entalpia jele a fizikai/kémiai szakirodalomban "H" és nem "E" tulajdonképpen lábjegyzetre való.
Az, hogy a "tömeg" alatt te valami mást értesz, az ugyan zavaró, de elviselhető.
Az, hogy az energia-impulzus tenzorban a negatív nyomást nem tudod értelmezni az problémás, de végülis magánügy.