A fény lelassítása
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 1594
- Csatlakozott: 2012.08.19. 14:02
A fény lelassítása
Az egész magyarázat zavaros volt, én nem is értettem. Fénynek a milye préselődik össze?szabiku írta:A 36. percnél van egy érdekes kísérlet.
Ezt kellene pontosan megmagyarázni.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 92
- Csatlakozott: 2017.06.23. 22:11
A fény lelassítása
Gondolom megfelelően csörpölt impulzus és diszperzió + indukált átlátszóság a közegre.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 36
- Csatlakozott: 2017.01.23. 17:34
A fény lelassítása
Ezt az együttérzést! Meg kell a szívnek szakadni...
De tudok jobbat.
Ha szegény Morcos nem érti, te viszont igen (hiszen úgyis mindent jobban tudsz mindenkinél, még Einsteinnél is), akkor akár te is kifejthetnéd.
dgy
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása

Gondoltam meghagyom ennek ismertetését egy hozzáértőbb személynek. Ez így van helyén.
0 x
-
- Hozzászólások: 36
- Csatlakozott: 2017.01.23. 17:34
A fény lelassítása
Ebben az esetben egy tisztességes - nem nagyképű és nem pimasz - ember a következőt írta volna:
- és nem próbálja "elegáns" felülállással meg lenézéssel szegény Morcosra kenni az egészet.szabiku írta VOLNA:
Kérlek, fejtsd ki bővebben, mert nem érteM.
A tudatlanság önmagában nem bűn.
A mindentudássá habosított, önimádattal, nagyképűséggel, mindenki más lenézésével és állandósult megalázó stílusú szövegekkel dúsított pimasz tudatlanság viszont az. És ráadásul undorító.
dgy
0 x
-
- Hozzászólások: 3585
- Csatlakozott: 2012.07.25. 17:32
-
- Hozzászólások: 1594
- Csatlakozott: 2012.08.19. 14:02
A fény lelassítása
Így most már értem:dgy írta:De tudok jobbat.
Ha szegény Morcos nem érti, te viszont igen (hiszen úgyis mindent jobban tudsz mindenkinél, még Einsteinnél is), akkor akár te is kifejthetnéd.
dgy
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
http://www.ng.hu/Tudomany/2003/12/Lesto ... _a_csapdat
http://index.hu/tudomany/fenystop1211/
http://hvg.hu/tudomany/20130728_1_percr ... ni_a_fenyt
http://users.atw.hu/kladna/elemireszek/fenylassito.htm
http://civiltudomany.blog.hu/2009/07/17 ... egallitasa
http://www.xhirek.hu/index.php?cikk=new ... o_feny.php
http://www.ng.hu/Tudomany/2003/12/Aki_m ... iserletrol
http://nol.hu/archivum/archiv-436670-245372
ez utóbbi:
Hau és kollégái nem kezdők a fénnyel való trükközés terén: 1999-ben például sikerült az egyébként 300 ezer km/másodperc sebességgel száguldó fényt egy szuperhideg közegben, az úgynevezett Bose-Einstein-kondenzátumban 60 km/órára lassítaniuk. 2001-ben ennél is tovább mentek: megállították a fényt, majd újra elindították. Az amerikai fizikusok akkori kísérletében az abszolút nullához közeli hőmérsékletre lehűtött, egyetlen kvantumállapotba (Bose-Einstein-kondenzátum) rendeződött rubídium atomsokaságra két olyan vörös színű lézernyalábot - egy fő- és egy segédnyalábot - bocsátottak, amelyeknek a színe csak kissé tért el egymástól. Később a segédnyalábot kikapcsolták. Bizonyos ok miatt ekkor megszűnt a kimenő fényjel, az anyagban kialakult újfajta rendezettség tárolta a belépett fény "leírását". A segédnyaláb újbóli bekapcsolására kiszabadult az információ - a kísérletről részletesen a Magyar Tudomány számolt be 2002-ben -, és az eredeti vörös jellel teljesen megegyező vörös fény lépett ki a gázból. Az első sikeres kísérletekben fél milliszekundum volt a tárolás idő. Ez az atomi világban hosszú idő, ennyi idő alatt 150 kilométert tesz meg vákuumban a fény.
A mostani felfedezés ezen az eredményen tesz túl: a fényt nem abban a közegben indították újra, ahol megállították. A tudósok itt is azt használták ki, hogy a fény és az atomok különösen viselkednek a Bose-Einstein-kondenzátumban. Hau professzorék ezúttal nátriumatomokat hűtöttek az abszolút nulla foknál (mínusz 273 Celsius-fok) csak töredék fokokkal melegebbre, és két egymáshoz közeli atomfelhőt hoztak kondenzált állapotba - ismertette lapunkkal a kísérlet lényegét Benedict Mihály, a Szegedi Tudományegyetem elméleti fizikusa. A kondenzátumban 24 km/órára lelassított irányított lézerfény átrendezte az atomokat, és ezt az állapotot a tudósok egy második lézerrel rögzítették.
Az egyik kondenzált atomfelhőt sárga lézerfénnyel világították meg, amely egy vele szemben haladó, közel azonos hullámhosszú (színű) kontroll-lézerrel együtt átrendezte az atomokat. A kontroll-lézert ezután kikapcsolták, miközben a két fénysugár hatására a felhő atomjainak egy része küldöncként elindult a másik ultrahideg atomfelhő felé. Miután a küldönc elérte ezt a másik kondenzátumot, abban az eredeti fény tulajdonságainak lenyomatát őrző állapot alakult ki. Ekkor a második kondenzátumot világították meg a kontroll-lézerrel, s az újra az eredetinek megfelelő - a kontrollsugárral szembe haladó - lézerfényt sugárzott ki. Mindez koherens módon ment végbe, ami azt jelenti, hogy az eredeti fénysugárban hordozott információ átkerült a mozgó atomfelhőbe, majd a második kondenzátumban ismét olyan fénysugár keletkezett, amely az eredetivel azonos információt hordozott. A két kondenzátum közötti távolság tized milliméteres nagyságrendű volt, amelyet a küldönc atomok mintegy 200 méter/óra sebességgel tettek meg.
A kísérlet jelentősége az, hogy bizonyos információt kódoló műveleteket a fényen közvetlenül nehéz végrehajtani, de a kondenzátumok és lézer segítségével a másodlagosan keletkező fényjel tulajdonságai célzottan befolyásolhatók. Az amerikaiak szerint az információtechnológiában, de a kvantumtechnikában is szerepe lehet a kísérleteknek.
http://www.bitepito.hu/pir/index.php?se ... icleid=493
http://index.hu/tudomany/fenystop1211/
http://hvg.hu/tudomany/20130728_1_percr ... ni_a_fenyt
http://users.atw.hu/kladna/elemireszek/fenylassito.htm
http://civiltudomany.blog.hu/2009/07/17 ... egallitasa
http://www.xhirek.hu/index.php?cikk=new ... o_feny.php
http://www.ng.hu/Tudomany/2003/12/Aki_m ... iserletrol
http://nol.hu/archivum/archiv-436670-245372
ez utóbbi:
Hau és kollégái nem kezdők a fénnyel való trükközés terén: 1999-ben például sikerült az egyébként 300 ezer km/másodperc sebességgel száguldó fényt egy szuperhideg közegben, az úgynevezett Bose-Einstein-kondenzátumban 60 km/órára lassítaniuk. 2001-ben ennél is tovább mentek: megállították a fényt, majd újra elindították. Az amerikai fizikusok akkori kísérletében az abszolút nullához közeli hőmérsékletre lehűtött, egyetlen kvantumállapotba (Bose-Einstein-kondenzátum) rendeződött rubídium atomsokaságra két olyan vörös színű lézernyalábot - egy fő- és egy segédnyalábot - bocsátottak, amelyeknek a színe csak kissé tért el egymástól. Később a segédnyalábot kikapcsolták. Bizonyos ok miatt ekkor megszűnt a kimenő fényjel, az anyagban kialakult újfajta rendezettség tárolta a belépett fény "leírását". A segédnyaláb újbóli bekapcsolására kiszabadult az információ - a kísérletről részletesen a Magyar Tudomány számolt be 2002-ben -, és az eredeti vörös jellel teljesen megegyező vörös fény lépett ki a gázból. Az első sikeres kísérletekben fél milliszekundum volt a tárolás idő. Ez az atomi világban hosszú idő, ennyi idő alatt 150 kilométert tesz meg vákuumban a fény.
A mostani felfedezés ezen az eredményen tesz túl: a fényt nem abban a közegben indították újra, ahol megállították. A tudósok itt is azt használták ki, hogy a fény és az atomok különösen viselkednek a Bose-Einstein-kondenzátumban. Hau professzorék ezúttal nátriumatomokat hűtöttek az abszolút nulla foknál (mínusz 273 Celsius-fok) csak töredék fokokkal melegebbre, és két egymáshoz közeli atomfelhőt hoztak kondenzált állapotba - ismertette lapunkkal a kísérlet lényegét Benedict Mihály, a Szegedi Tudományegyetem elméleti fizikusa. A kondenzátumban 24 km/órára lelassított irányított lézerfény átrendezte az atomokat, és ezt az állapotot a tudósok egy második lézerrel rögzítették.
Az egyik kondenzált atomfelhőt sárga lézerfénnyel világították meg, amely egy vele szemben haladó, közel azonos hullámhosszú (színű) kontroll-lézerrel együtt átrendezte az atomokat. A kontroll-lézert ezután kikapcsolták, miközben a két fénysugár hatására a felhő atomjainak egy része küldöncként elindult a másik ultrahideg atomfelhő felé. Miután a küldönc elérte ezt a másik kondenzátumot, abban az eredeti fény tulajdonságainak lenyomatát őrző állapot alakult ki. Ekkor a második kondenzátumot világították meg a kontroll-lézerrel, s az újra az eredetinek megfelelő - a kontrollsugárral szembe haladó - lézerfényt sugárzott ki. Mindez koherens módon ment végbe, ami azt jelenti, hogy az eredeti fénysugárban hordozott információ átkerült a mozgó atomfelhőbe, majd a második kondenzátumban ismét olyan fénysugár keletkezett, amely az eredetivel azonos információt hordozott. A két kondenzátum közötti távolság tized milliméteres nagyságrendű volt, amelyet a küldönc atomok mintegy 200 méter/óra sebességgel tettek meg.
A kísérlet jelentősége az, hogy bizonyos információt kódoló műveleteket a fényen közvetlenül nehéz végrehajtani, de a kondenzátumok és lézer segítségével a másodlagosan keletkező fényjel tulajdonságai célzottan befolyásolhatók. Az amerikaiak szerint az információtechnológiában, de a kvantumtechnikában is szerepe lehet a kísérleteknek.
http://www.bitepito.hu/pir/index.php?se ... icleid=493
0 x
-
- Hozzászólások: 3585
- Csatlakozott: 2012.07.25. 17:32
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 1594
- Csatlakozott: 2012.08.19. 14:02
A fény lelassítása
Megmondom öszintén szabiku ez dgy-nek megint nem fog tetszeni. Le fog korholni.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 930
- Csatlakozott: 2015.04.10. 23:21
A fény lelassítása
Nem csak ebben tévedett,de legalább beismerte.
Olyan ember nincs aki sohasem téved...olyan viszont sok van aki soha nem látja be.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 930
- Csatlakozott: 2015.04.10. 23:21
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Ha belátta volna, akkor pl. egyenesbe tudott volna kerülni a kvantumelmélettel, vagy pl. nem akarta volna élete végéig egyesíteni az elektromágneses kölcsönhatást a gravitációval, stb...
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Azért apróval megemlítem a forrást: http://kozmoforum.hu/viewtopic.php?f=9&t=310&start=67api írta:Csak az ideálisan szabad (a kölcsönhatásoktól távoli) fotonoknak nincs tömege
Szerintem ez nem O.K.
És akkor erre G.Á "professzor" ráerősít:
A kvantummechanika kétféle határozatlansága; a csererelációkból fakadó és a szuperpozícióból fakadó, valóban összemosódik. Pl. egy ideje gerjesztett állapotban lévő atom kelt egy fotont, ami egy idő után újra gerjesztett állapotba hoz egy távolabbi másik atomot. Ebben a folyamatban az alapvető cserereláció miatti határozatlanság miatt lesz a kibocsájtott fotonnak szuperpozíciós impulzus állapota. Ez nem rontja el a vákuumbeli foton nulla nyugalmi tömegét. A kvantumtérelméleti részecskekölcsönhatás-elméletben a Feynman-diagramokat alapvető kölcsönhatások leírására használjuk, melyekben a köztes ágaknak megfelelő virtuális részecskék semmilyen fizikai kísérlettel, eszközzel nem mutathatók ki. A példaként felhozott eset nem ilyen alapvető ütközési folyamat, abban a köztes foton nem virtuális, hanem valódi és kimutatható is.G.Á írta:... úgymond fundamentális megközelítéssel definiáljuk a fotont, de ennek fizikai köze csak a szabad, vákuumbeli, kellően hosszú ideje kölcsönhatásban nem lévő fényhez van. [...] Ha azt akarjuk, hogy a "foton"-nak köze legyen a valódi, fizikailag közvetlenül is észlelhető jelenségekhez, akkor olyan objektumokat vezetünk be, melyek "majdnem fundamentális fotonok", [...] Az ilyen objektumokat hívhatjuk kvázirészecskéknek is, és valóban lehet hozzájuk tömeget rendelni. [...] ha szigorúan vesszük a definíciókat, a valóságban csak virtuális részecskék léteznek.
G.Á és api elképzelésében a kölcsönhatási szintek és így a virtuális foton össze van keverve a kvázi fotonnal, ami meg a vákuumbeli valódi fotonnal... A vákuumbeli valódi fotonnak nincs nyugalmi tömege. Ez így egy elkülönült, de nagyon is létező objektum, és szó sincs arról, hogy mert általában ez nemG.Á írta:Az egy másik kérdés, hogy igen rövid időn belül a "virtualitásuk", vagyis az energia-impulzus reláció sértése nagyon kicsinnyé válik, és adott esetben ekkor nevezhetjük a részecskét valódinak.
a végtelenségig létező objektum, ezért ez valami ideális dolog lenne, ami szinte nincs is, azaz pontosan nem is létezik. A vákuumbeli valódi fotonra csupán mondjuk, hogy nulla a nyugalmi tömege, de valójában az nem csak éppen eltűnő, hanem az egyszerűen nincs is, ami egy erősebb tény.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
És Dgy is megerősíti az elgondolást:
Szerintem ez így hamis és félrevezető. Sántít.dgy írta:Két kölcsönhatási lépés között a részecskéknek nem kell tömeghéjon lenniük, azaz nem kell rájuk teljesülnie az energia, impulzus és tömeg közti ismert E2−p2=m2 relációnak. És mivel minden részecske mindig éppen két kölcsönhatási esemény között van, ezért - ahogy Ákos is írta - szigorúan véve csakis virtuális részecskék léteznek.
0 x
-
- Hozzászólások: 92
- Csatlakozott: 2017.06.23. 22:11
A fény lelassítása
Nem, a virtuális egyszerűen azt jelenti, hogy nincs tömeghéjon.G.Á és api elképzelésében a kölcsönhatási szintek és így a virtuális foton össze van keverve a kvázi fotonnal, ami meg a vákuumbeli valódi fotonnal...
A "kvázirészecske" foton pedig a (például közeggel) kölcsönhatás megértéséhez bevezetett, a fizikai valósághoz közelebb álló objektum.
Ameddig megmondjuk hogy miről beszélünk, addig nincsen semmi összekeverve.
Jó neked.Szerintem ez így hamis és félrevezető.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
És itt is van rögtön egy értelmes gondolat az állítottakkal szemben:
=^.^= írta:szerintetek szigorúan véve semmilyen részecskére soha nem teljesül az egyenlőség, addig mások szerint szigorúan véve minden részecskére teljesül.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Na de szerintem ezek elméletileg különálló kölcsönhatási szinten vannak értelmezve. A ti koncepciótok szerint pedig ezek végül is elméletileg összefolynak, ami szerintem nem áll.G.Á írta:Nem, a virtuális egyszerűen azt jelenti, hogy nincs tömeghéjon.
A "kvázirészecske" foton pedig a (például közeggel) kölcsönhatás megértéséhez bevezetett, a fizikai valósághoz közelebb álló objektum.
Ameddig megmondjuk hogy miről beszélünk, addig nincsen semmi összekeverve.
0 x
-
- Hozzászólások: 92
- Csatlakozott: 2017.06.23. 22:11
A fény lelassítása
Elképzelhető, hogy készítek egy kiselőadás-fóliát, amelyben ezekről a fogalmakról lesz szó.
Arra gondoltam, hogy felhasználom az itt szereplő hozzászólások egy részét, mint a gyakori félreértésekre való példát.
Hozzájárulnál-e ehhez, illetve beszélnél-e még egy kicsit arról, hogy te miként képzeled el a virtuális és kvázirészecskék fogalmának jelentését?
Külön örülnék neki, ha a kvantumfluktuációkról is írnál valamit.
Előre is köszönöm.
Arra gondoltam, hogy felhasználom az itt szereplő hozzászólások egy részét, mint a gyakori félreértésekre való példát.
Hozzájárulnál-e ehhez, illetve beszélnél-e még egy kicsit arról, hogy te miként képzeled el a virtuális és kvázirészecskék fogalmának jelentését?
Külön örülnék neki, ha a kvantumfluktuációkról is írnál valamit.
Előre is köszönöm.
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Nos, az indexen tegnap elkezdtem regélni a virtuális részecskékről, sőt, nyitottam is neki egy topikot, amit azzal kezdtem, hogy beidéztem a K-fórumról a nemrég megjelent elképzeléseket, amik többnyire szerintem igen helytelenek. Ezek DGy, és a te mondataid többnyire, valamint Api-é, azaz Construct-é. Engem is érdekel ez a téma, foglalkozok is vele, szóval ezt a tisztázás céljából tettem. Link: http://forum.index.hu/Article/showArticle?t=9238697
A kvázirészecskék fogalmát röviden én úgy képzelem el, hogy létükhöz nem a vákuum a háttér, hanem valamilyen egyéb anyagi struktúra, és így egészen újszerű kvantumos részecskék, melyek a vákuum háttéren nem tudnak létezni, hiszen létük éppen a háttérként szolgáló valamilyen anyag szerkezetéből adódik.
A kvantumfluktuáció fogalma nem egyértelmű. Ugye egyszerű alapvetőség, hogy a kvantumelméleti harmonikus oszcillátornak a legalacsonyabb energiájú állapotában van úgynevezett meg nemszűnő nullponti (azaz vákuum)ingadozása. Viszont olyat is emlegetnek, hogy a vákuumban virtuális részecske-antirészecske párok keletkeznek. Ez utóbbi szerintem az egyik másodrendű Feynman-gráfos folyamat, aminek nincsenek külső vonalai, hanem csak három egymásba záródó belső, amik egy virtuális foton, egy virtuális részecske, és a neki megfelelő virtuális antirészecske.
A virtuális részecskékről az említett linken elkezdtem írni, majd folytatom, de röviden néhány dolgot megemlítek:
A virtuális részecske tulajdonképpen propagátor, azaz terjedési függvény. (A belső virtuális világ dolgainak boncolgatásokkor az úgynevezett pontos propagátorokkal meg vertexekkel bíbelődnek a nagy elmészek: Landau IV könyv XI. fejezetétől.)
Attól, hogy a virtuális részecskék úgymond nincsenek tömeghéjon (meg képzetes tömeg), nem áll elő olyan, hogy bármilyen hatás, részecske terjedési sebessége nagyobb lenne a c vákuumbeli fénysebességnél, azaz az elvi korlátnál. Téveszme az is, hogy a Feynman-gráfok külső vonalai egy mindent egyben leíró nagyobb "Feynman-gráf" belső vonalai lennének. Ebből a gondolatból fakadóan írtátok, hogy valójában nincsenek csak virtuális részecskék... (az okoskodó api meg még rá is ült erre a hamis lóra. xD ) Tehát a nemkvázi valódi észlelhető fotonoknak nulla a nyugalmi tömege, ami egyáltalán nem valamiféle idealizáció. Külön érdekesség, hogy tömeghéjon is vannak virtuális fotonok, de ezek másfélék; a longitudinális és skaláris "foton"-ok, melyek szerepelnek a hullámfüggvényben(/állapotvektorban), mint a valódiak, csak szintén nem észlelhetők (elméletileg sem az indefinit metrikájú állapottér miatt). A kvantumelektrodinamika így nem mértékinvariáns, vagy ha annak tekintjük, akkor vétünk a kvantálási szabály ellen, miszerint minden polarizációs szabadsági fokra kvantálni kell. A mértéktérelmélet ezzel a(z egyébként elméletileg hozzá nagyon közeli) kvantumtérelméleti precízkedéssel nem törődik, és ennek ellenére sikeres.
Több gondolatom is van e témáról, csak most elfogyott az időm.
A kvázirészecskék fogalmát röviden én úgy képzelem el, hogy létükhöz nem a vákuum a háttér, hanem valamilyen egyéb anyagi struktúra, és így egészen újszerű kvantumos részecskék, melyek a vákuum háttéren nem tudnak létezni, hiszen létük éppen a háttérként szolgáló valamilyen anyag szerkezetéből adódik.
A kvantumfluktuáció fogalma nem egyértelmű. Ugye egyszerű alapvetőség, hogy a kvantumelméleti harmonikus oszcillátornak a legalacsonyabb energiájú állapotában van úgynevezett meg nemszűnő nullponti (azaz vákuum)ingadozása. Viszont olyat is emlegetnek, hogy a vákuumban virtuális részecske-antirészecske párok keletkeznek. Ez utóbbi szerintem az egyik másodrendű Feynman-gráfos folyamat, aminek nincsenek külső vonalai, hanem csak három egymásba záródó belső, amik egy virtuális foton, egy virtuális részecske, és a neki megfelelő virtuális antirészecske.
A virtuális részecskékről az említett linken elkezdtem írni, majd folytatom, de röviden néhány dolgot megemlítek:
A virtuális részecske tulajdonképpen propagátor, azaz terjedési függvény. (A belső virtuális világ dolgainak boncolgatásokkor az úgynevezett pontos propagátorokkal meg vertexekkel bíbelődnek a nagy elmészek: Landau IV könyv XI. fejezetétől.)
Attól, hogy a virtuális részecskék úgymond nincsenek tömeghéjon (meg képzetes tömeg), nem áll elő olyan, hogy bármilyen hatás, részecske terjedési sebessége nagyobb lenne a c vákuumbeli fénysebességnél, azaz az elvi korlátnál. Téveszme az is, hogy a Feynman-gráfok külső vonalai egy mindent egyben leíró nagyobb "Feynman-gráf" belső vonalai lennének. Ebből a gondolatból fakadóan írtátok, hogy valójában nincsenek csak virtuális részecskék... (az okoskodó api meg még rá is ült erre a hamis lóra. xD ) Tehát a nemkvázi valódi észlelhető fotonoknak nulla a nyugalmi tömege, ami egyáltalán nem valamiféle idealizáció. Külön érdekesség, hogy tömeghéjon is vannak virtuális fotonok, de ezek másfélék; a longitudinális és skaláris "foton"-ok, melyek szerepelnek a hullámfüggvényben(/állapotvektorban), mint a valódiak, csak szintén nem észlelhetők (elméletileg sem az indefinit metrikájú állapottér miatt). A kvantumelektrodinamika így nem mértékinvariáns, vagy ha annak tekintjük, akkor vétünk a kvantálási szabály ellen, miszerint minden polarizációs szabadsági fokra kvantálni kell. A mértéktérelmélet ezzel a(z egyébként elméletileg hozzá nagyon közeli) kvantumtérelméleti precízkedéssel nem törődik, és ennek ellenére sikeres.
Több gondolatom is van e témáról, csak most elfogyott az időm.
0 x
-
- Hozzászólások: 92
- Csatlakozott: 2017.06.23. 22:11
-
- Hozzászólások: 148
- Csatlakozott: 2017.01.13. 12:35
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Ennyi??G.Á írta:Köszönöm, ennyi elég is.
És akkor a fóliádon most én leszek a példa, aki félreérti a dolgokat?
0 x
-
- Hozzászólások: 943
- Csatlakozott: 2016.12.22. 01:27
A fény lelassítása
Találtam valamit, ennek szerintem köze van a topik témájában felhozott érdekes kvantumos kísérletekhez.
https://qubit.hu/2019/07/28/amikor-a-fe ... szefonodik
Persze azért érezhető, hogy itt tulajdonképpen nem is igazán a fény lelassításáról van szó, hanem inkább bonyolult kvantumrendszeres effektusokról. Szóval ne dőljünk be a felületes (inkább szenzációhajhász) elnevezéseknek..
https://qubit.hu/2019/07/28/amikor-a-fe ... szefonodik
Persze azért érezhető, hogy itt tulajdonképpen nem is igazán a fény lelassításáról van szó, hanem inkább bonyolult kvantumrendszeres effektusokról. Szóval ne dőljünk be a felületes (inkább szenzációhajhász) elnevezéseknek..
0 x
-
- Hozzászólások: 92
- Csatlakozott: 2017.06.23. 22:11
A fény lelassítása
Ez a cikk annyira általános dologról próbál meg beszámolni ismeretterjesztő szinten, hogy így szinte mindenhez köze lehet. Így persze a fény lelassításához is.
0 x
-
- Hozzászólások: 930
- Csatlakozott: 2015.04.10. 23:21
A fény lelassítása
Úgy látom nem érted.Azért akart Ő mindent egyesíteni,mert azt már tudta hogy minden mindennel összefügg.Azt hogy hogyan?Mikor? és mennyire?...azt rád hagyta.Ez a Te örökséged
0 x